
Canonical reductions of principal bundles

Emanuel Roth

Abstract. We introduce the theory of vector bundles and principal bundles, and prove
the existence and uniqueness of Harder-Narasimhan filtrations of vector bundles. Af-
terward, we generalize this result as canonical reductions of principal bundles.

We work with principal bundles whose structure groups are reductive groups, as
seen in Chapter 1, studying the examples GL(r,C), SL(r,C), SO(r,C) and Sp(2n,C).
Of importance are their Cartan, Borel and parabolic subgroups, and the root space
decompositions of their Lie algebras.

In Chapter 2, we study degrees and slopes of vector bundles, as well as reductions of
principal bundles. We then define slope-(semi)-stability of vector bundles and generalize
this to Ramanathan-(semi)-stability of principal bundles.

In Chapter 3, we construct Harder-Narasimhan filtrations of vector bundles, and
canonical reductions of principal bundles in two ways, proving that these are unique.
We view examples of these filtrations for orthogonal bundles and symplectic bundles,
and see how they store slope-semistability and Ramanathan-semistability properties.

In Chapter 4, we construct topological types of principal bundles, learning the
obstruction theory to do so. We use this to succinctly characterize canonical reductions
through Harder-Narasimhan types.
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CHAPTER 1

Parabolic subgroups of reductive groups

In this chapter, we follow [Hum72] to review complex reductive Lie algebras and their
root space decompositions, and follow [Bor91] and [MT12] to review complex reductive
groups.

Our examples include the general linear group GL(r,C), and for r ≥ 2, also the
special linear group SL(r,C), the special orthogonal group SO(r,C), the orthogonal
group O(r,C) and the symplectic group Sp(2n,C), along with the Lie algebras of these
groups.

In the end, we construct parabolic subgroups of these groups.

1.1. Reductive and semisimple groups

1.1.1. Reductive and semisimple Lie algebras
Let g ̸= 0 be a finite-dimensional complex Lie algebra, with the Lie bracket [_,_] :

g× g→ C. For subsets A,B ⊂ g, we write [A,B] = spanC([X,Y ]|X ∈ A, Y ∈ B).

Definition 1.1.1. (a) The Lie algebra g is abelian if [g, g] = 0.
(b) The Lie algebra g is semisimple if g has no nonzero abelian ideals.
(c) The Lie algebra g is reductive if for every ideal a of g, there exists a complemen-

tary ideal b of g, such that g = a⊕ b as Lie algebras.

In order to prove that certain Lie algebras are reductive or semisimple, we rely on
characterizations of reductivity and semisimplicity using the following definitions.

Definition 1.1.2. (a) We define the commutator series of g:

. . . ⊆ g1 ⊆ g0 = g, (1.1.1)

such that g0 = g, and for all i ∈ N, we have gi = [gi−1, gi−1].
(b) The Lie algebra g is solvable if there exists an i ∈ N, such that gi = 0.
(c) We define the lower central series of g:

. . . ⊆ g1 ⊆ g0 = g, (1.1.2)

such that g0 = g, and for all i ∈ N, we have gi = [g, gi−1].
(d) The Lie algebra g is nilpotent if there exists an i ∈ N, such that gi = 0.
(e) The radical r(g) of g is the maximal solvable ideal of g.
(f) The center z(g) of g is the ideal {X ∈ g|∀Y ∈ g : [X,Y ] = 0}.

We also make use of Killing forms.

Definition 1.1.3. For all X ∈ g, we denote the adjoint representation of X by
ad(X) : g→ g. We define the Killing form κ : g× g→ C as the symmetric bilinear form:

κ(X,Y ) = tr(ad(X) ◦ ad(Y )). (1.1.3)

The Killing form is ad-invariant, i.e., for all X,Y, Z ∈ g, we have:

κ(ad(Z)(X), Y ) = −κ(X, ad(Z)(Y )). (1.1.4)
2
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For a complex Lie groupG with the Lie algebra g, the Killing form is also Ad-invariant,
i.e., for all g ∈ G and for all X,Y ∈ g, we have:

κ(Ad(g)(X),Ad(g)(Y )) = κ(X,Y ). (1.1.5)

Theorem 1.1.4. The following are equivalent:
(i) The Lie algebra g is semisimple.

(ii) We have r(g) = 0.
(iii) The Killing form κ is nondegenerate.
(iv) The Lie algebra g decomposes into a direct sum of ideals that are simple Lie

algebras.

Proof. The equivalence of (i) and (ii) can be verified directly. The equivalence of
(ii) and (iii) is proven in [Kna88, I.7 Theorem 1.45], and the equivalence of (ii) and (iv)
is proven in [Kna88, I.7 Theorem 1.54]. □

Theorem 1.1.5. The following are equivalent:
(i) The Lie algebra g is reductive.

(ii) The Lie algebra g is the direct sum g = s⊕ a of a semisimple Lie algebra s and
an abelian Lie algebra a.

(iii) The adjoint representation ad : g→ Der(g) is completely reducible, i.e., a direct
sum of irreducible representations.

(iv) There exists a nondegenerate symmetric ad-invariant bilinear form on g.
(v) We have r(g) = z(g).

(vi) For gss = [g, g], we have g = gss ⊕ z(g) as Lie algebras.
If these conditions are fulfilled, gss is semisimple.

Proof. The equivalence of (i) and (ii) is a consequence of Theorem 1.1.4.
The equivalence of (ii) and (iii) is clear, since irreducible subrepresentations of ad :

g→ Der(g) correspond ideals of g that are simple Lie algebras.
The implication from (ii) to (v) is proven by directly calculating r(g) = z(g). For (v)

implying (ii), we verify g ≃ (g/r(g)) ⊕ r(g) as Lie algebras, where g/r(g) is semisimple
due to [Kna88, I.3 Proposition 1.14], and r(g) = z(g) is abelian.

We follow that (ii) implies (iv) by modifying the Killing form on g, and (iv) implies
(i) through the use of complements a⊥ of ideals a, with respect to the given bilinear form.

For (ii) being equivalent to (vi), we use that gss ≃ g/z(g) is semisimple. □

Due to this theorem, semisimple Lie algebras are reductive.
Our first example of a reductive Lie algebra is the Lie algebra gl(r,C) of GL(r,C).

Example 1.1.6. The Lie algebra gl(r,C) = Mat(r × r,C) of the complex algebraic
group GL(r,C) = {A ∈ Mat(r × r,C)|det(A) ̸= 0}.

We have gl(r,C) ̸= 0. The bilinear form ⟨_,_⟩ : gl(r,C)× gl(r,C)→ C:
⟨X,Y ⟩ = tr(XY ), (1.1.6)

is symmetric, nondegenerate and ad-invariant. Hence, gl(r,C) is reductive due to Theo-
rem 1.1.5.

We denote the r×r-identity matrix by Ir. By calculating that the center of GL(r,C)
is Z(GL(r,C)) = {λIr|λ ∈ C×}, we have its Lie algebra z(gl(r,C)) = spanC(Ir), which is
contained in r(gl(r,C)). Thus, gl(r,C) is not semisimple due to Theorem 1.1.4.

We now present examples of Lie subalgebras g ̸= 0 of gl(r,C) that are closed under
conjugate transposition (_)H , and claim that they are reductive. In this case, g is closed
under the Cartan involution θ : gl(r,C)→ gl(r,C):

X 7→ −XH , (1.1.7)
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as defined in [Kna88, VI.2]. Therefore, ⟨_,_⟩ induces a Hermitian inner-product ⟨_,_⟩θ :
gl(r,C)× gl(r,C)→ C:

⟨X,Y ⟩θ = tr(XY H), (1.1.8)
which restricts to a Hermitian inner-product on g, due to its positive-definiteness. Thus,
⟨_,_⟩ restricts to a nondegenerate symmetric ad-invariant bilinear form on g, and g is
reductive due to Theorem 1.1.5.

The semisimplicity of g is equivalent to z(g) = 0 due to Theorem 1.1.5.

Example 1.1.7. (a) The Lie algebra sl(r,C) = {X ∈ gl(r,C)|tr(X) = 0} of the
complex algebraic group SL(r,C) = {A ∈ GL(r,C)|det(A) = 1}.

For r = 1, we have sl(1,C) = 0.
For r ≥ 2, we have sl(r,C) ̸= 0. The center Z(SL(r,C)) is contained

within Z(GL(r,C)) and is thus finite, implying z(sl(r,C)) = 0. Thus, sl(r,C) is
semisimple.

For all r ∈ N, as the Lie bracket is the commutator of matrices, gl(r,C)ss is
trace-free, and gl(r,C)ss ⊆ sl(r,C). Since z(sl(r,C)) = 0, and since sl(r,C) is an
ideal of gl(r,C), we also have sl(r,C) ⊆ gl(r,C)ss, implying gl(r,C)ss = sl(r,C).

(b) The Lie algebra so(r,C) = {X ∈ gl(r,C)|X +XT = 0} of the complex algebraic
group SO(r,C) = {A ∈ SL(r,C)|ATA = Ir}, where (_)T denotes transposition.

For r = 1, we have so(1,C) = 0.
For r = 2, we have so(2,C) ̸= 0. Furthermore, so(2,C) ≃ C is an abelian

Lie algebra, and is thus not semisimple, but still reductive.
For r ≥ 3, we have so(r,C) ̸= 0. The center Z(SO(r,C)) is finite, since

Z(SO(r,C)) is contained within the set of matrices λIr, where λ ∈ C× is an
r-th root of unity. Since the Lie algebra of Z(SO(r,C)) is z(so(r,C)), we have
z(so(r,C)) = 0, and that so(r,C) is semisimple.

Note that so(r,C) = o(r,C) is also the Lie algebra of the complex algebraic
group O(r,C) = {A ∈ GL(r,C)|ATA = Ir}.

(c) The Lie algebra sp(2n,C) = {X ∈ gl(2n,C)|J2nX +XTJ2n = 0} of the complex
algebraic group Sp(2n,C) = {A ∈ GL(2n,C)|ATJ2nA = J2n}, where:

J2n =
(

0 In
−In 0

)
∈ GL(2n,C). (1.1.9)

We have sp(2n,C) ̸= 0. The center Z(Sp(2n,C)) = {I2n,−I2n} is finite, and
thus we have z(sp(2n,C)) = 0, and that sp(2n,C) is semisimple.

1.1.2. Root space decompositions
We now cover root space decompositions of reductive Lie algebras g, with respect to

a Cartan subalgebra t of g. These induce a root system Φ(g, t) of a real subspace VR of
the dual space t∨ = HomC(t,C) of t.

For the rest of this chapter, let g be a complex reductive Lie algebra.

Definition 1.1.8. (a) An element X ∈ g is semisimple if ad(X) : g → g is
semisimple or equivalently diagonalizable.

(b) A Lie subalgebra t of g is toral if all of its elements X ∈ t are semisimple.
(c) A Cartan subalgebra t of g is a nilpotent Lie subalgebra of g that is self-

normalizing, i.e., t = {X ∈ g|∀Y ∈ t : [X,Y ] ∈ t}.

Remark 1.1.9. (a) There exists a bijection:
{Cartan subalgebras of g} ↔ {Cartan subalgebras of gss}, (1.1.10)

t 7→ gss ∩ t, (1.1.11)
h⊕ z(g)←[ h, (1.1.12)
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which is well-defined due to the decomposition g = gss⊕z(g) from Theorem 1.1.5.
Analogous bijections hold for toral subalgebras and maximal toral subalgebras
of g.

(b) A toral subalgebra t of g is an abelian subalgebra, following [Hum72, II Lemma
8.1] and (a).

(c) There exists a toral subalgebra t of g that properly contains z(g), following
[Hum72, IV 15.3] and (a).

For the rest of this chapter, let t be a maximal toral subalgebra of the complex
reductive Lie algebra g. For α ∈ t∨, we define the weight space of α:

gα = {X ∈ g|∀Y ∈ t : ad(Y )(X) = α(Y )X}. (1.1.13)
We also define the set of roots Φ(g, t) = {α ∈ t∨|α ̸= 0, gα ̸= 0}.

The following lemma states how we can decompose g into weight spaces.

Lemma 1.1.10. There exists a weight space decomposition of g:

g = g0 ⊕
⊕

α∈Φ(g,t)
gα, (1.1.14)

as a direct sum of complex vector spaces.

Proof. See [Hum72, II 8.1] and (a) of Remark 1.1.9. □

Remark 1.1.11. In the situation of Lemma 1.1.10, we have:
(a) For 0 ∈ t∨, we have t = g0, as proven in [Hum72, II Proposition 8.2].
(b) For all α ∈ Φ(g, t), we have dimC(gα) = 1, as proven in [Hum72, II Proposition

8.4].
(c) For all α, β ∈ t∨, we have [gα, gβ] = gss ∩ gα+β, following from [Hum72, II

Proposition 8.4] and (a) of Remark 1.1.9.
(d) The bijection in (a) of Remark 1.1.9 induces a bijection:

Φ(g, t)→ Φ(gss, gss ∩ t), α 7→ α|gss∩t, (1.1.15)
that preserves weight spaces, i.e., gα = (gss)α|gss∩t

.

Note that in Lemma 1.1.11, we can equivalently refer to t as a Cartan subalgebra due
to the following.

Lemma 1.1.12. For a Lie subalgebra h of g, the following are equivalent:
(i) The subalgebra h is a maximal toral subalgebra of g.

(ii) The subalgebra h is a Cartan subalgebra of g.

Proof. See [Hum72, IV Corollary 15.3] and (a) of Remark 1.1.9. □

Altogether, t is a Cartan subalgebra of g, where there exists a weight space decom-
position:

g = t⊕
⊕

α∈Φ(g,t)
gα. (1.1.16)

We now wish to confirm that Φ(g, t) forms a root system. Firstly, it is shown in
[Hum72, II Corollary 8.2] that the Killing form κ restricted to gss ∩ t is nondegenerate,
inducing an isomorphism of complex vector spaces:

(gss ∩ t)∨ → gss ∩ t, α 7→ Hα, such that α = κ(_, Hα). (1.1.17)
Through this, κ induces a nondegenerate symmetric bilinear form (_,_) : (gss ∩ t)∨ ×
(gss ∩ t)∨ → C:

(α, β) = κ(Hα, Hβ). (1.1.18)
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Theorem 1.1.13. There exists a natural isomorphism of complex vector spaces be-
tween (gss ∩ t)∨ and V = spanC(Φ(g, t)), such that (_,_) restricts to a symmetric inner-
product ⟨_,_⟩ on VR = spanR(Φ(g, t)).

The set Φ(g, t) is a root system of (VR, ⟨_,_⟩), i.e.:
(i) The set Φ(g, t) is finite, and does not contain 0.

(ii) For all α ∈ Φ(g, t), the only integer multiples of α in Φ(g, t) are α,−α ∈ Φ(g, t).
For all nonzero α ∈ VR, we define the reflection sα : VR → VR:

sα(x) = x− 2 ⟨x, α⟩
⟨α, α⟩

α. (1.1.19)

(iii) For all α ∈ Φ(g, t), we have sα(Φ(g, t)) ⊆ Φ(g, t).
(iv) For all α, β ∈ Φ(g, t), sα(β)− β is an integer multiple of α.

Proof. See [Hum72, II Theorem 8.5] and (a) of Remark 1.1.9. □

Since we know that Φ(g, t) is a root system, we call the decomposition in (1.1.16)
the root space decomposition of g with respect to t. Note that Φ(g, t) and Φ(gss, gss ∩ t)
define root systems of the same type, in terms of the Dynkin classification from [Hum72,
III Theorem 11.4].

We now define Borel subalgebras and parabolic subalgebras of g, and find character-
izations of them using that Φ(g, t) is a root system.

Definition 1.1.14. (a) A Borel subalgebra b of g is a maximal solvable Lie sub-
algebra of g.

(b) A parabolic subalgebra p of g is a Lie subalgebra of g containing a Borel subalgebra
b of g.

(c) A parabolic subalgebra p of g is maximal, if it is maximal in terms of inclusion
amongst all proper parabolic subalgebras of g.

In order to characterize all Borel subalgebras b of g containing t, we introduce positive
roots, as defined in [Hum72, III 10.1].

Definition 1.1.15. A choice of half the roots Φ(g, t)+ ⊆ Φ(g, t) is a set of positive
roots of Φ(g, t) if we have the following:

(i) For all α ∈ Φ(g, t), we have α ∈ Φ(g, t)+ or −α ∈ Φ(g, t)+, but not both.
(ii) For all α, β ∈ Φ(g, t)+ such that α+ β ∈ Φ(g, t), we have α+ β ∈ Φ(g, t)+.

Remark 1.1.16. The following are in correspondence:
(a) Borel subalgebras b of g containing t.
(b) Subsets of positive roots Φ(g, t)+ ⊆ Φ(g, t).

As seen in [Hum72, IV 16.3], this correspondence is found through the decomposition:

b = t⊕
⊕

α∈Φ(g,t)+

gα. (1.1.20)

In order to similarly characterize parabolic subalgebras p of g, we need to know that
positive roots induce simple roots, as shown in [Hum72, III Theorem’ 10.1].

Remark 1.1.17. Given positive roots Φ(g, t)+ ⊆ Φ(g, t), there exists a unique subset
△ ⊆ Φ(g, t)+ of simple roots, such that △ fulfills the following:

(i) Every root in Φ(g, t)+ is a nonnegative integer linear combination of roots in △.
(ii) The set △ is minimal amongst all subsets of Φ(g, t)+ fulfilling (i), with respect

to inclusion. Equivalently, △ forms an R-basis of VR.

Let b be a Borel subalgebra of g containing t, corresponding to Φ(g, t)+ in the sense
of Remark 1.1.16.
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Remark 1.1.18. The following are in correspondence:
(a) Parabolic subalgebras p of g containing b.
(b) Subsets I of the simple roots △ of Φ(g, t)+.

Such parabolic subalgebras in (a) are called standard.
As seen [Hum72, IV Exercise 16.6], this correspondence is found through the decom-

position:
p = t⊕

⊕
α∈ΓI

gα, ΓI = Φ(g, t)+ ∪ {α ∈ Φ(g, t)|α ∈ spanZ(△ \ I)}. (1.1.21)

Due to this, we write pI for p. We also have the following useful equivalences:
(c) The inclusions I ⊆ J ⊆ △ are equivalent to pJ ⊆ pI .
(d) The equality I = ∅ is equivalent to pI = g.
(e) The equality I = △ is equivalent to pI = b.
(f) The set I = {∗} being a singleton is equivalent to pI being a maximal standard

parabolic subgroup of g.
Using these results, we can identify all Cartan subalgebras of g with t and all Borel

subalgebras of g with b.
Remark 1.1.19. Borel subalgebras of g are conjugate to each other, and the same

holds for Cartan subalgebras of g. This follows from [Hum72, IV 16.4]. Thus, all parabolic
subalgebras of g are conjugate to standard parabolic subalgebras of g.

This remark allows use define ranks of g.
Definition 1.1.20. (a) The rank of g is the dimension dimC(t) of any Cartan

subalgebra t of g.
(b) The semisimple rank of g is the dimension dimC(gss∩t) for any Cartan subalgebra

t of g.
The semisimple rank is also equal to the number of elements in △. If g is semisimple,

its rank and semisimple rank coincides. However, if g is reductive but not semisimple,
the semisimple rank of g is less than the rank of g.

Finally, we mention Levi decompositions of standard parabolic subalgebras of g.
Remark 1.1.21. For a standard parabolic subalgebra pI of g, corresponding to I ⊆ △,

we have the Levi decomposition pI = lI ⊕ uI as Lie algebras, given by:
lI = t⊕

⊕
α∈ΓI∩−ΓI

gα, uI =
⊕

α∈ΓI\−ΓI

gα. (1.1.22)

The Levi-factor lI is reductive and the nilpotent radical uI is nilpotent.
1.1.3. Reductive and semisimple groups

We now construct complex reductive and semisimple groups, whose Lie algebras are
reductive and semisimple Lie algebras, following [Bor91] and [MT12]. We will see that
these constructions group-theoretic analogs of those in Subsection 1.1.1 and Subsection
1.1.2.

Let G be a complex linear algebraic group, carrying the Zariski topology, with neutral
element e ∈ G and Lie algebra g ̸= 0.

Definition 1.1.22. (a) The radical R(G) of G is the maximal closed connected
solvable complex algebraic normal subgroup of G, where solvable groups are
defined as in [Bor91, I.2.4].

(b) The unipotent radical Ru(G) of G is the maximal closed connected unipotent
complex algebraic normal subgroup of G, where unipotent groups are linear
algebraic groups whose elements are unipotent, as defined in [MT12, Definition
2.6].
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(c) The group G is called semisimple if R(G) = e.
(d) The group G is called reductive if Ru(G) = e.

Since Ru(G) consists of the unipotent elements of R(G), semisimple groups are re-
ductive.

Definition 1.1.23. (a) A Borel subgroup B of G is a maximal closed connected
solvable complex algebraic subgroup of G.

(b) A parabolic subgroup P of G is a closed complex algebraic subgroup of G con-
taining a Borel subgroup B of G.

(c) A parabolic subgroup P of G is maximal, if it is maximal in terms of inclusion
amongst all proper parabolic subgroups of G.

(d) If a Borel subgroup B is fixed, then P is called standard if it contains B.
(e) A Cartan subgroup T of G is the centralizer of a maximal torus of G.

An equivalent condition for parabolic subgroups P of G is that it is a closed complex
algebraic subgroup such that G/P is a complex complete algebraic variety, using [Bor91,
IV.11.2 Corollary] and [MT12, Theorem 6.4]. As a group-theoretic analog of Lemma
1.1.12, if G is reductive, Cartan subgroups are equivalently maximal tori, as shown in
[Bor91, IV.13.17 Corollary 2].

In order to determine whether certain complex linear algebraic groups are semisimple
or reductive, we make use of the following characterizations of radicals.

Remark 1.1.24. (a) From [MT12, Proposition 6.16], we have that:

R(G) =

 ⋂
B⊆G is a Borel subgroup

B

0

, (1.1.23)

where (_)0 denotes the identity component of a complex algebraic group.
(b) If G is reductive, then R(G) = Z(G)0, as seen in [Bor91, IV.11.21 Proposition].

Remark 1.1.25. (a) In [MT12, Theorem 8.17], it is proven that the Lie alge-
bras of semisimple groups are semisimple. Analogous statements also hold for
reductive groups, and their Cartan, Borel and (standard) parabolic subgroups.

(b) If G is reductive, the exponential map expG : g→ G, as defined in [Čap23, 1.8],
provides a bijection:

{Parabolic subalgebras of g} ↔ {Connected parabolic subgroups of G}. (1.1.24)

Analogous bijections hold for Cartans and Borels of g and G. Furthermore, when
we fix a Borel subgroup B of G, an analogous bijection also holds for connected
standard parabolics.

By further fixing a Cartan subgroup T of G, contained within B, we can
identify connected standard parabolic subgroups P of G with subsets I ⊆ △,
writing PI for P , where the Lie algebra of PI is pI , from Remark 1.1.18.

Note that if G is connected, all parabolic subgroups are connected, as seen
in [Bor91, IV.11.16 Theorem].

Similarly to Remark 1.1.19, these correspondences imply the conjugacy of Cartan,
Borel and parabolic subgroups of G.

Remark 1.1.26. Borel subgroups of G are conjugate to each other, and the same
holds for Cartan subgroups of G. This follows from [Bor91, IV.11.1 Theorem, IV.11.3
Corollary]. Thus, all parabolic subgroups of G are conjugate to standard parabolic sub-
groups of G.
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Finally, we mention Levi decompositions of standard parabolic subgroups of a complex
reductive group G, with respect to a Cartan subgroup T of G, and a Borel subgroup B
of G containing T .

Let PI be a standard parabolic subgroup of G, corresponding to I ⊆ △.

Remark 1.1.27. The unipotent radical of PI is UI = Ru(PI), which has the Lie
algebra uI , from the Levi decomposition in Remark 1.1.21.

There exists a unique closed complex reductive subgroup LI of PI , called the Levi-
factor of PI , containing T , such that LI ≃ PI/UI , and such that the Lie algebra of LI is
lI .

As complex algebraic groups, it is shown in [Bor91, IV.14.18 Proposition, IV.14.19
Corollary] that PI ≃ UI ⋊LI is a semi-direct product of UI and LI . We call UI ⋊LI the
Levi decomposition of PI .

We now present examples of complex reductive and semisimple groups, whose Lie
algebras are those from Example 1.1.6 and Example 1.1.7.

Example 1.1.28. (a) The connected complex algebraic group GL(r,C).
We have gl(r,C) ̸= 0. The Lie-Kolchin theorem, from [MT12, Theorem 4.1],

applied on the canonical representation ρ : GL(r,C) → GL(Cr), implies that
any solvable complex algebraic subgroup is the stabilizer of a flag of subspaces of
Cr. Thus, the upper-right triangular matrices of GL(r,C) form a Borel subgroup
of GL(r,C).

Using another representation of GL(r,C), we also have that the lower-left
triangular matrices of GL(r,C) form a Borel subgroup of GL(r,C). Using (a) of
Remark 1.1.24, we intersect these Borel subgroups and see that R(GL(r,C)) is
contained within the diagonal matrices of GL(r,C). Thus, Ru(GL(r,C)) = Ir,
and GL(r,C) is reductive.

Using (b) of Remark 1.1.24, GL(r,C) is not semisimple, since R(GL(r,C)) =
Z(GL(r,C))0 is nontrivial.

(b) The connected complex algebraic group SL(r,C).
For r = 1, we have sl(1,C) = 0.
For r ≥ 2, we have sl(r,C) ̸= 0. The same argument as in (a) gives us

that Ru(SL(r,C)) = Ir. Thus, SL(r,C) is reductive. Since R(SL(r,C)) =
Z(SL(r,C))0 = Ir, SL(r,C) is semisimple.

(c) The connected complex algebraic group SO(r,C).
For r = 1, we have so(1,C) = 0.
For r = 2, we have so(2,C) ̸= 0. Furthermore, SO(2,C) ≃ C× is abelian,

and is thus not semisimple, but still reductive.
For r ≥ 3, we have so(r,C) ̸= 0. By using the Lie-Kolchin theorem, we can

use a similar argument to (a) to follow that Ru(SO(r,C)) = Ir. Thus, SO(r,C)
is reductive. Since R(SO(r,C)) = Z(SO(r,C))0 = Ir, SO(r,C) is semisimple.

(d) The unconnected complex algebraic group O(r,C). Since the identity component
of O(r,C) is SO(r,C), the same conclusions from (c) for SO(r,C) apply to
O(r,C).

(e) The connected complex algebraic group Sp(2n,C).
We have sp(2n,C) ̸= 0. By using the Lie-Kolchin theorem, we can use a

similar argument to (a) to follow that Ru(Sp(2n,C)) = I2n. Thus, Sp(2n,C) is
reductive. Since R(Sp(2n,C)) = Z(Sp(2n,C))0 = I2n, Sp(2n,C) is semisimple.

1.2. Parabolic subgroups of reductive groups

Having introduced examples of complex reductive and semisimple Lie algebras and
groups, we can now describe their root space decompositions and standard parabolics.
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For each connected complex reductive group G in our list, with the Lie algebra g:
(Step 1) We find a suitable Cartan subgroup T of G, and its Cartan subalgebra t of g,

and determine the rank and semisimple rank of g.
(Step 2) We find the roots Φ(g, t), and the root space decomposition of g. Then we find

a suitable choice of positive roots Φ(g, t)+, and the induced simple roots △. We
also categorize the root system Φ(g, t), in the sense of the Dynkin classification
from [Hum72, III Theorem 11.4].

(Step 3) We find the Borel subalgebra b of g and the Borel subgroupB ofG, corresponding
to Φ(g, t)+. We find the standard parabolic subalgebras pI of g, the standard
parabolic subgroups PI of G, and how they correspond to subsets I ⊆ △.

(Step 4) We find the Levi decompositions pI = lI ⊕ uI and PI ≃ UI ⋊ LI .

1.2.1. The cases of SL(r,C) and GL(r,C)
Example 1.2.1. The connected complex semisimple group SL(r,C), r ≥ 2.
(Step 1) For i, j = 1, . . . , r, let Eij be the r × r-matrix with 1 on the i-th row and

j-th column, and 0 elsewhere, and for i = 1, . . . , r − 1, let Ti = Eii − Ei+1,i+1. Then
sl(r,C) has the C-basis (Eij , T1, . . . , Tr−1|i, j = 1, . . . , r : i ̸= j).

We claim that the subalgebra t = spanC(T1, . . . Tr) of diagonal matrices is a Cartan
subalgebra of sl(r,C). We calculate for all k, l = 1, . . . , r− 1, and all i, j = 1, . . . , r, i ̸= j,
that:

[Tk, Ek,j ] = Ek,j , j ̸= k, k + 1, (1.2.1)
[Tk, Ek+1,j ] = −Ek+1,j , j ̸= k, k + 1, (1.2.2)

[Tk, Ei,k] = −Ei,k, i ̸= k, k + 1, (1.2.3)
[Tk, Ei,k+1] = Ei,k+1, i ̸= k, k + 1, (1.2.4)
[Tk, Ek,k+1] = 2Ek,k+1, (1.2.5)
[Tk, Ek+1,k] = −2Ek+1,k, (1.2.6)

[Tk, Eij ] = 0, i ̸= k, k + 1 and j ̸= k, k + 1, (1.2.7)
[Tk, Tl] = 0. (1.2.8)

The subalgebra t is thus abelian and nilpotent, and the calculations (1.2.1). . .(1.2.8) imply
that t is self-normalizing, i.e., t = {X ∈ sl(r,C)|∀Y ∈ t : [X,Y ] ∈ t}. Thus, t is a Cartan
subalgebra of sl(r,C), which has rank dimC(t) = r − 1, equal to its semisimple rank as
well.

Therefore, the corresponding subgroup of diagonal matrices T of SL(r,C) is a maximal
torus isomorphic to (C×)r−1, and thus a Cartan subgroup.

(Step 2) We have that (E11, . . . , Err) forms a C-basis of the diagonal matrices of
gl(r,C). For the induced dual C-basis (E∨

11, . . . , E
∨
rr) and i = 1, . . . , r, we denote ei =

E∨
ii |t : t→ C. Then for all i, j = 1, . . . , r, i ̸= j, we define αij = ei − ej ∈ t∨.

For all i, j = 1, . . . , r, i ̸= j, and all T ∈ t, the calculations (1.2.1). . .(1.2.8) can be
summarized as [T,Eij ] = αij(T )Eij . Thus, the roots are:

Φ(sl(r,C), t) = {αij |i, j = 1, . . . , r : i ̸= j}, (1.2.9)
with the weight spaces sl(r,C)αij = spanC(Eij), i, j = 1, . . . , r, i ̸= j, such that the root
space decomposition is:

sl(r,C) = t⊕
⊕

αij∈Φ(sl(r,C),t)
spanC(Eij). (1.2.10)

We claim that the set Φ(sl(r,C), t)+ = {αij |i, j = 1, . . . , r : i < j} forms positive roots
of Φ(sl(r,C), t), corresponding to the weight spaces spanned by Eij , where the nontrivial
entry 1 lies above or right of the diagonal.
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Firstly, it is clear that for all αij ∈ Φ(sl(r,C), t), we have that either αij ∈
Φ(sl(r,C), t)+ or −αij = αji ∈ Φ(sl(r,C), t)+, since i ̸= j. Furthermore, if αij , αkl ∈
Φ(sl(r,C), t)+, such that αij + αkl ∈ Φ(sl(r,C), t), we have j = k and αij + αkl = αil ∈
Φ(sl(r,C), t)+, since i < j = k < l implies i < l.

The simple roots are △ = {αi,i+1|i = 1, . . . , r − 1}, since △ spans t∨, and for all
αij ∈ Φ(sl(r,C), t)+, we have that αij = αi,i+1 + . . . + αj−1,j is a nonnegative linear
combination of roots in △.

In the sense of the Dynkin classification from [Hum72, III Theorem 11.4], Φ(sl(r,C), t)
is a root system of type Ar−1.

(Step 3) The induced Borel subalgebra b is the upper-right triangular matrices of
sl(r,C), and the induced Borel subgroup B is the upper-right triangular matrices of
SL(r,C).

The standard parabolic subalgebras pI are the subalgebras of upper-right triangular
block matrices of sl(r,C), where the sizes of the blocks are coded by I ⊆ △. Similar
statements hold for the standard parabolic subgroups PI of SL(r,C).

For i = 1, . . . , r− 1, if αi,i+1 ∈ I, there exists a diagonal block in pI and PI ending at
the i-th row, and another diagonal block starting at the i+ 1-st row.

Note that maximal standard parabolics of sl(r,C) and SL(r,C), i.e., standard parabol-
ics corresponding to singletons I = {∗} ⊆ △, are the standard parabolics that have
precisely two diagonal blocks.

We now see how I ⊆ △ determines the sizes of blocks in examples. For r = 4, we
have I ⊆ △ = {α1,2, α2,3, α3,4}, and:

• For I = {α1,2}, pI and PI have a lower-right 3× 3-block:

pI =



a11 a12 a13 a14
0 a22 a23 a24
0 a32 a33 a34
0 a42 a43 a44

 , 4∑
i=1

aii = 0

 , PI =



∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 ∈ SL(4,C)

 .
(1.2.11)

• For I = {α2,3, α3,4}, pI and PI have an upper-left 2× 2-block:

pI =



a11 a12 a13 a14
a21 a22 a23 a24
0 0 a33 a34
0 0 0 a44

 , 4∑
i=1

aii = 0

 , PI =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 ∈ SL(4,C)

 .
(1.2.12)

(Step 4) For the Levi decompositions pI = lI ⊕ uI and PI ≃ UI ⋊ LI , we have that
lI and LI consist of the diagonal block matrices of pI and PI , whereas uI consists of the
nilpotent matrices of pI , and UI consists of the unipotent matrices of PI .

Note that for a certain r1, . . . , rl ∈ N, such that r1 + . . .+ rl = r, LI is isomorphic to
the subgroup of matrices of GL(r1,C)× . . .×GL(rl,C), of determinant 1.

For r = 4, we have I ⊆ △ = {α1,2, α2,3, α3,4}, and:

• For I = {α2,3, α3,4} ⊆ △, the Levi decompositions of pI and PI appear as:

lI =



a11 a12 0 0
a21 a22 0 0
0 0 a33 0
0 0 0 a44

 , 4∑
i=1

aii = 0

 , LI =



∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 ∈ SL(4,C)

 ,
(1.2.13)
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uI =




0 0 a13 a14
0 0 a23 a24
0 0 0 a34
0 0 0 0


 , UI =




1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

 ∈ SL(4,C)

 .
(1.2.14)

In this case, it is easy to directly verify that pI = lI ⊕ uI and PI ≃ UI ⋊ LI , and
LI ≃ PI/UI .

Example 1.2.2. The connected complex reductive group GL(r,C).
From (a) of Example 1.1.7, we know that gl(r,C) = gl(r,C)ss ⊕ z(gl(r,C)), where

gl(r,C)ss = sl(r,C) and z(gl(r,C)) = spanC(Ir). Through this and (a) of Remark 1.1.9,
we can make use of results from Example 1.2.1.

(Step 1) For r = 1, T = GL(1,C) is a Cartan subgroup of GL(1,C) isomorphic to
C×, with the Lie algebra t = gl(1,C), which has rank 1 and semisimple rank 0.

For r ≥ 2, let h be the Cartan subalgebra of diagonal matrices of sl(r,C), then due
to (a) of Remark 1.1.9, t = h ⊕ spanC(Ir) is a Cartan subalgebra of gl(r,C) of diagonal
matrices, which has rank r and semisimple rank r − 1.

This is the Lie algebra of the Cartan subgroup T of GL(r,C) of diagonal matrices,
isomorphic to (C×)r.

(Step 2) For r = 1, the root space decomposition is t = gl(1,C), with no roots.
For r ≥ 2, due to (d) of Remark 1.1.11, there exists a bijection between Φ(gl(r,C), t)

and Φ(sl(r,C), h) preserving weight spaces. Thus, using notation from (Step 2) of Ex-
ample 1.2.1, the roots are:

Φ(gl(r,C), t) = {αij |i, j = 1, . . . , r : i ̸= j}, (1.2.15)
with the weight spaces gl(r,C)αij = spanC(Eij), i, j = 1, . . . , r, i ̸= j, such that the root
space decomposition is:

gl(r,C) = t⊕
⊕

αij∈Φ(gl(r,C),t)
spanC(Eij). (1.2.16)

Similarly to Example 1.2.1, we choose the positive roots Φ(gl(r,C), t)+ = {αij |i, j =
1, . . . , r : i < j}, inducing the simple roots △ = {αi,i+1|i = 1, . . . , r − 1}.

In the sense of the Dynkin classification from [Hum72, III Theorem 11.4], Φ(gl(r,C), t)
is a root system of type Ar−1.

For the rest of this example, we assume r ≥ 2.
(Step 3) The induced Borel subalgebra b is the upper-right triangular matrices of

gl(r,C), and the induced Borel subgroup B is the upper-right triangular matrices of
GL(r,C).

The standard parabolic subalgebras pI are the subalgebras of upper-right triangular
block matrices of gl(r,C), of which the sizes of blocks are coded by I ⊆ △, completely
analogously to (Step 3) of Example 1.2.1. Similar statements hold for the standard
parabolic subgroups PI of GL(r,C).

The only difference to Example 1.2.1 is that the subalgebras pI are not trace-free,
and the subgroups PI do not have determinant 1.

(Step 4) The Levi decompositions pI = lI ⊕ uI and PI ≃ UI ⋊ LI are analogous to
(Step 4) of Example 1.2.1.

The only difference to Example 1.2.1 is that for a certain r1, . . . , rl ∈ N, such that
r1 + . . . + rl = r, LI is isomorphic to GL(r1,C) × . . . × GL(rl,C), and not a proper
subgroup.

1.2.2. The case of SO(r,C)
We now investigate SO(r,C), r ≥ 2, handling the odd cases r = 2n+ 1 and the even

cases r = 2n separately, as their root systems are not of the same type.
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Since root space decompositions, Cartan, Borel and parabolic subgroups, are invariant
under isomorphisms of complex algebraic groups, we can investigate complex reductive
groups isomorphic to SO(r,C), where these constructions are most easily described.

Matrices in SO(r,C) are those in GL(r,C) preserving the standard nondegenerate
quadratic form Q(x) = x2

1 +. . .+x2
r on Cr. Since all quadratic forms on Cr are equivalent,

we can choose another quadratic form Q(x) = x1xr + . . .+ xrx1 on Cr to induce another
complex reductive group SO(r,C) of matrices in GL(r,C) preserving Q. This group is
isomorphic to SO(r,C), with the Lie algebra so(r,C). Explicitly, we have:

Kr =

0 0 1
0 · · · 0
1 0 0

 ∈ GL(r,C), (1.2.17)

SO(r,C) = {A ∈ SL(r,C)|ATKrA = Kr}, (1.2.18)
so(r,C) = {X ∈ gl(r,C)|KrX +XTKr = 0}. (1.2.19)

Analogously, we have:

O(r,C) = {A ∈ GL(r,C)|ATKrA = Kr}, (1.2.20)
o(r,C) = so(r,C). (1.2.21)

which are isomorphic to O(r,C) and o(r,C).
The advantage of SO(r,C) over SO(r,C) is that in the odd r = 2n+ 1 case, certain

Cartan, Borel and standard parabolic subgroups of SL(r,C) can be intersected with
SO(r,C) to obtain Cartan, Borel and standard parabolic subgroups of SO(r,C), as seen
in [MT12, Example 6.7]. This cannot be done for SO(r,C), for which the approach in
[Kna88, II.1 Example 2, Example 4] can be taken instead.

Example 1.2.3. The connected complex semisimple group SO(2n+ 1,C).
(Step 1) For z1, . . . , zn ∈ C and s1, . . . , sn ∈ C×, we define:

Zz1,...,zn =



z1 0 . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . ...
... . . . zn

. . . . . . . . . ...
... . . . . . . 0 . . . . . . ...
... . . . . . . . . . −zn

. . . ...
... . . . . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0 −z1


∈ so(2n+ 1,C), (1.2.22)

Ss1,...,sn =



s1 0 . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . ...
... . . . sn

. . . . . . . . . ...
... . . . . . . 1 . . . . . . ...
... . . . . . . . . . s−1

n
. . . ...

... . . . . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0 s−1

1


∈ SO(2n+ 1,C). (1.2.23)

We claim that the subgroup T = {Ss1,...,sn |s1, . . . , sn ∈ C×} of diagonal matrices is a
Cartan subgroup of SO(2n+1,C), implying that its Lie algebra t = {Zz1,...,zn |z1, . . . , zn ∈
C} is a Cartan subalgebra of so(2n + 1,C), which therefore has rank n, equal to its
semisimple rank.
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Since T is a torus of SO(2n + 1,C) isomorphic to (C×)n, it is contained within a
maximal torus M of SO(2n+ 1,C), for which we claim that M = T . Choose s1, . . . , sn ∈
C× such that s1, . . . , sn, s

−1
1 , . . . , s−1

n are all distinct. Using centralizer subgroups of
SO(2n+ 1,C) and GL(2n+ 1,C), we have:

M ⊆ ZSO(2n+1,C)(T ) ⊆ ZGL(2n+1,C)(Ss1,...,sn), (1.2.24)

where ZGL(2n+1,C)(Ss1,...,sn) consists only of diagonal matrices. Thus, we have M = T .
Note that these Cartans are the Cartans of sl(2n + 1,C) and SL(2n + 1,C) from

(Step 1) of Example 1.2.1, intersected with so(2n+ 1,C) and SO(2n+ 1,C).
(Step 2) We use notation from Example 1.2.1. For i, j = 1, . . . , n, i ̸= j, since

ei = −e2n+2−i, we can use the calculations in (1.2.1). . .(1.2.8) to follow that:

so(2n+ 1,C)α = spanC(Eij − E2n+2−j,2n+2−i), α = ei − ej , (1.2.25)
so(2n+ 1,C)α = spanC(Ei,2n+2−j − Ej,2n+2−i), α = ei + ej , (1.2.26)
so(2n+ 1,C)α = spanC(E2n+2−i,j − E2n+2−j,i), α = −ei − ej , (1.2.27)
so(2n+ 1,C)α = spanC(Ei,n+1 − En+1,2n+2−i), α = ei, (1.2.28)
so(2n+ 1,C)α = spanC(E2n+2−i,n+1 − En+1,i), α = −ei. (1.2.29)

Since these span so(2n+ 1,C), we found the root space decomposition, with the roots:

Φ(so(2n+ 1,C), t) = {ei − ej , ei + ej ,−ei − ej , ek,−ek|i, j, k = 1, . . . , n : i ̸= j}.
(1.2.30)

The following set:

Φ(so(2n+ 1,C), t)+ = {ei − ej , ei + ej , ek|i, j, k = 1, . . . , n : i < j}, (1.2.31)

forms positive roots, inducing the simple roots △ = {ei − ei+1, en|i = 1, . . . , n− 1}.
In the sense of the Dynkin classification from [Hum72, III Theorem 11.4], Φ(so(2n+

1,C), t) is a root system of type Bn.
(Step 3) The induced Borel subalgebra b is the upper-right triangular matrices of

so(2n + 1,C), and the induced Borel subgroup B is the upper-right triangular matrices
of SO(2n+ 1,C).

The standard parabolic subalgebras pI are the subalgebras of upper-right triangular
block matrices of so(2n+ 1,C), of which the sizes of blocks are coded by I ⊆ △. Similar
statements hold for the standard parabolic subgroups P I of SO(2n+ 1,C).

For i = 1, . . . , n, if ei − ei+1 ∈ I or ei ∈ I, there exists diagonal blocks in pI and P I
ending at the i-th row and at the 2n+ 1− i-th row, and diagonal blocks starting at the
i+ 1-st row and at the 2n+ 2− i-th row.

Note that these Borels and standard parabolics are the Borels and standard parabolics
of sl(2n + 1,C) and SL(2n + 1,C), from (Step 3) of Example 1.2.1, intersected with
so(2n+ 1,C) and SO(2n+ 1,C).

We now see how I ⊆ △ determines the sizes of blocks in examples. For n = 2, we
have I ⊆ △ = {e1 − e2, e2}, and:

• For I = {e1 − e2}, pI and P I have a middle 3× 3-block:

pI =




a11 a12 a13 a14 0
0 a22 a23 0 −a14
0 a32 0 −a23 −a13
0 0 −a32 −a22 −a12
0 0 0 0 −a11


 , P I =




∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 0 ∗

 ∈ SO(5,C)

 .
(1.2.32)
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• For I = {e2}, pI and P I have upper-left and lower-right 2× 2-blocks:

pI =




a11 a12 a13 a14 0
a21 a22 a23 0 −a14
0 0 0 −a23 −a13
0 0 0 −a22 −a12
0 0 0 −a21 −a11


 , P I =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗

 ∈ SO(5,C)

 .
(1.2.33)

(Step 4) For the Levi decompositions pI = lI ⊕ uI and P I ≃ U I ⋊ LI , we have that
lI and LI consist of the diagonal block matrices of pI and P I , whereas uI consists of the
nilpotent matrices of pI , and U I consists of the unipotent matrices of P I .

Note that for a certain r1, . . . , rl−1 ∈ N, nl ∈ N0, such that r1 + . . . + rl−1 ≤ n and
n+ 1 ≤ r1 + . . .+ rl−1 + 2nl + 1 ≤ 2n+ 1, LI is isomorphic to the group:

GL(r1,C)× . . .×GL(rl−1,C)× SO(2nl + 1,C). (1.2.34)
For n = 2, we have I ⊆ △ = {e1 − e2, e2}, and:
• For I = {e2}, the Levi decompositions of pI and P I appear as:

lI =




a11 a12 0 0 0
a21 a22 0 0 0
0 0 0 0 0
0 0 0 −a22 −a12
0 0 0 −a21 −a11


 , LI =




∗ ∗ 0 0 0
∗ ∗ 0 0 0
0 0 ∗ 0 0
0 0 0 ∗ ∗
0 0 0 ∗ ∗

 ∈ SO(5,C)

 ,
(1.2.35)

uI =




0 0 a13 a14 0
0 0 a23 0 −a14
0 0 0 −a23 −a13
0 0 0 0 0
0 0 0 0 0


 , U I =




1 0 ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 0
0 0 0 0 1

 ∈ SO(5,C)

 .
(1.2.36)

In this case, it is easy to directly verify that pI = lI ⊕ uI and P I ≃ U I ⋊ LI , and
LI ≃ P I/U I .

Example 1.2.4. The connected complex reductive group SO(2,C), and the connected
complex semisimple group SO(2n,C), n ≥ 2.

(Step 1) For z1, . . . , zn ∈ C and s1, . . . , sn ∈ C×, we define:

Zz1,...,zn =



z1 0 . . . . . . . . . 0

0 . . . . . . . . . . . . ...
... . . . zn

. . . . . . ...
... . . . . . . −zn

. . . ...
... . . . . . . . . . . . . 0
0 . . . . . . . . . 0 −z1


∈ so(2n,C), (1.2.37)

Ss1,...,sn =



s1 0 . . . . . . . . . 0

0 . . . . . . . . . . . . ...
... . . . sn

. . . . . . ...
... . . . . . . s−1

n
. . . ...

... . . . . . . . . . . . . 0
0 . . . . . . . . . 0 s−1

1


∈ SO(2n,C). (1.2.38)
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Using the same argument from (Step 1) of Example 1.2.3, the subgroup T =
{Ss1,...,sn |s1, . . . , sn ∈ C×} of diagonal matrices is a Cartan subgroup of SO(2n,C), imply-
ing that its Lie algebra t = {Zz1,...,zn |z1, . . . , zn ∈ C} is a Cartan subalgebra of so(2n,C),
which therefore has rank n, equal to its semisimple rank. In particular for n = 1, we have
t = so(2,C) and T = SO(2,C).

Note that these Cartans are the Cartans of sl(2n,C) and SL(2n,C) from (Step 1) of
Example 1.2.1, intersected with so(2n,C) and SO(2n,C).

(Step 2) For n = 1, the root space decomposition is t = so(2,C), with no roots.
For n ≥ 2, we use notation from Example 1.2.1. For i, j = 1, . . . , n, i ̸= j, since

ei = −e2n+1−i, we can use the calculations in (1.2.1). . .(1.2.8) to follow that:

so(2n,C)α = spanC(Eij − E2n+1−j,2n+1−i), α = ei − ej , (1.2.39)
so(2n,C)α = spanC(Ei,2n+1−j − Ej,2n+1−i), α = ei + ej , (1.2.40)
so(2n,C)α = spanC(E2n+1−i,j − E2n+1−j,i), α = −ei − ej . (1.2.41)

Since these span so(2n,C), we found the root space decomposition, with the roots:

Φ(so(2n,C), t) = {ei − ej , ei + ej ,−ei − ej |i, j = 1, . . . , n : i ̸= j}. (1.2.42)

The following set:

Φ(so(2n,C), t)+ = {ei − ej , ei + ej |i, j = 1, . . . , n : i < j}, (1.2.43)

forms positive roots, inducing the simple roots △ = {ei−ei+1, en−1 +en|i = 1, . . . , n−1}.
In the sense of the Dynkin classification from [Hum72, III Theorem 11.4],

Φ(so(2n,C), t) is a root system of type Dn.
For the rest of this example, we assume n ≥ 2.
(Step 3) The induced Borel subalgebra b is the upper-right triangular matrices of

so(2n,C), and the induced Borel subgroup B is the upper-right triangular matrices of
SO(2n,C).

Note that these Borels are the Borels of sl(2n,C) and SL(2n,C), from (Step 3) of
Example 1.2.1, intersected with so(2n,C) and SO(2n,C).

The standard parabolic subalgebras pI are the subalgebras of so(2n,C) containing
b. Isof en−1 − en /∈ I or en−1 + en ∈ I, then pI consists of upper-right triangular block
matrices of so(2n,C). If en−1 − en ∈ I and en−1 + en /∈ I, pI does not obtain this form,
but is nevertheless isomorphic to another standard parabolic subalgebra pJ of upper-
right triangular block matrices of so(2n,C). This isomorphism is found by permuting
the columns and rows of matrices in so(2n,C). Similar statements hold for the standard
parabolic subgroups P I of SO(2n,C).

Given en−1 − en /∈ I or en−1 + en ∈ I, for i = 1, . . . , n − 1, if ei − ei+1 ∈ I, there
exists diagonal blocks in pI and P I ending at the i-th row and at the 2n− i-th row, and
diagonal blocks starting at the i+ 1-st row and at the 2n+ 1− i-th row. If en−1 + en ∈ I,
there exists diagonal blocks ending at the n-th row and starting at the n+ 1-st row.

We now see how I ⊆ △ determines the sizes of blocks in examples. For n = 2, we
have I ⊆ △ = {e1 − e2, e1 + e2}, and:

• For I = {e1− e2}, pI and P I are not in the form of upper-right triangular block
matrices:

pI =



a11 a12 a13 0
0 a22 0 −a13
a31 0 −a22 −a12
0 −a31 0 −a11


 , P I =



∗ ∗ ∗ ∗
0 ∗ 0 ∗
∗ ∗ ∗ ∗
0 ∗ 0 ∗

 ∈ SO(4,C)

 . (1.2.44)
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• For I = {e1 + e2}, pI and P I have upper-left and lower-right 2× 2-blocks:

pI =



a11 a12 a13 0
a21 a22 0 −a13
0 0 −a22 −a12
0 0 −a21 −a11


 , P I =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 ∈ SO(4,C)

 . (1.2.45)

Note that these standard parabolics are isomorphic to each other, through permutations
of the middle two rows and columns.

(Step 4) Given en−1−en /∈ I or en−1+en ∈ I, for the Levi decompositions pI = lI⊕uI
and P I ≃ U I⋊LI , we have that lI and LI consist of the diagonal block matrices of pI and
P I , whereas uI consists of the nilpotent matrices of pI , and U I consists of the unipotent
matrices of P I .

Note that for all I ⊆ △, for a certain r1, . . . , rl−1 ∈ N, nl ∈ N0, such that r1 + . . . +
rl−1 ≤ n and n ≤ r1 + . . .+ rl−1 + 2nl ≤ 2n, LI is isomorphic to the group:

GL(r1,C)× . . .×GL(rl−1,C)× SO(2nl,C). (1.2.46)
For n = 2, we have I ⊆ △ = {e1 − e2, e1 + e2}, and:
• For I = {e1 + e2}, the Levi decompositions of pI and P I appear as:

lI =



a11 a12 0 0
a21 a22 0 0
0 0 −a22 −a12
0 0 −a21 −a11


 , LI =



∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗

 ∈ SO(4,C)

 , (1.2.47)

uI =




0 0 a13 0
0 0 0 −a13
0 0 0 0
0 0 0 0


 , U I =




1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 0
0 0 0 1

 ∈ SO(4,C)

 . (1.2.48)

In this case, it is easy to directly verify that pI = lI ⊕ uI and P I ≃ U I ⋊ LI , and
LI ≃ P I/U I .

Example 1.2.3 and Example 1.2.4 both apply analogously to O(r,C), where the iden-
tity components of parabolics of O(r,C) are parabolics of SO(r,C).

Through a fixed isomorphism SO(r,C) ≃ SO(r,C), these examples induce analogous
constructions on SO(r,C), such as parabolic subgroups PI of SO(r,C), corresponding to
I ⊆ △.

1.2.3. The case of Sp(2n,C)
We finally investigate Sp(2n,C). Similarly to the orthogonal case, by altering the

preserved symplectic form, we can induce another complex algebraic group Sp(2n,C)
isomorphic to Sp(2n,C), with the Lie algebra sp(2n,C), given by:

M2n =
(

0 Kn

−Kn 0

)
∈ GL(2n,C), (1.2.49)

Sp(2n,C) = {A ∈ GL(2n,C)|ATM2nA = M2n}, (1.2.50)
sp(2n,C) = {X ∈ gl(2n,C)|M2nX +XTM2n = 0}, (1.2.51)

such that certain Cartans, Borels and standard parabolics of SL(2n,C) and can be inter-
sected with Sp(2n,C) to obtain Cartans, Borels and standard parabolics of Sp(2n,C).

Example 1.2.5. The connected complex semisimple group Sp(2n,C).
(Step 1) For z1, . . . , zn ∈ C and s1, . . . , sn ∈ C×, we define Zz1,...,zn ∈ sp(2n,C)

and Ss1,...,sn ∈ Sp(2n,C) identically to (Step 1) of Example 1.2.4. Using the same
argument from (Step 1) of Example 1.2.3, the subgroup T = {Ss1,...,sn |s1, . . . , sn ∈ C×}
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of diagonal matrices is a Cartan subgroup of Sp(2n,C), implying that its Lie algebra
t = {Zz1,...,zn |z1, . . . , zn ∈ C} is a Cartan subalgebra of sp(2n,C), which therefore has
rank n, equal to its semisimple rank.

Note that these Cartans are the Cartans of sl(2n,C) and SL(2n,C) from (Step 1) of
Example 1.2.1, intersected with sp(2n,C) and Sp(2n,C).

(Step 2) We use notation from Example 1.2.1. For i, j = 1, . . . , n, i ̸= j, since
ei = −e2n+1−i, we can use the calculations in (1.2.1). . .(1.2.8) to follow that:

sp(2n,C)α = spanC(Eij − E2n+1−j,2n+1−i), α = ei − ej , (1.2.52)
sp(2n,C)α = spanC(Ei,2n+1−j + Ej,2n+1−i), α = ei + ej , (1.2.53)
sp(2n,C)α = spanC(E2n+1−i,j + E2n+1−j,i), α = −ei − ej , (1.2.54)
sp(2n,C)α = spanC(Ei,2n+1−i), α = 2ei, (1.2.55)
sp(2n,C)α = spanC(E2n+1−i,i), α = −2ei. (1.2.56)

Since these span sp(2n,C), we found the root space decomposition, with the roots:

Φ(sp(2n,C), t) = {ei − ej , ei + ej ,−ei − ej , 2ek,−2ek|i, j, k = 1, . . . , n : i ̸= j}.
(1.2.57)

The following set:

Φ(sp(2n,C), t)+ = {ei − ej , ei + ej , 2ek|i, j, k = 1, . . . , n : i < j}, (1.2.58)

forms positive roots, inducing the simple roots △ = {ei − ei+1, 2en|i = 1, . . . , n− 1}.
In the sense of the Dynkin classification from [Hum72, III Theorem 11.4],

Φ(sp(2n,C), t) is a root system of type Cn.
(Step 3) The induced Borel subalgebra b is the upper-right triangular matrices of

sp(2n,C), and the induced Borel subgroup B is the upper-right triangular matrices of
Sp(2n,C).

The standard parabolic subalgebras pI are the subalgebras of upper-right triangular
block matrices of sp(2n,C), of which the sizes of blocks are coded by I ⊆ △. Similar
statements hold for the standard parabolic subgroups P I of Sp(2n,C).

For i = 1, . . . , n, if ei − ei+1 ∈ I or 2ei ∈ I, there exists diagonal blocks in pI and
P I ending at the i-th row and at the 2n − i-th row, and diagonal blocks starting at the
i+ 1-st row and at the 2n+ 1− i-th row.

Note that these Borels and standard parabolics are the Borels and standard parabolics
of sl(2n,C) and SL(2n,C) from (Step 3) of Example 1.2.1, intersected with sp(2n,C)
and Sp(2n,C).

We now see how I ⊆ △ determines the sizes of blocks in examples. For n = 2, we
have I ⊆ △ = {e1 − e2, 2e2}, and:

• For I = {e1 − e2}, pI and P I have a middle 2× 2-block:

pI =



a11 a12 a13 a14
0 a22 a23 a13
0 a32 −a22 −a12
0 0 0 −a11


 , P I =



∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

 ∈ Sp(4,C)

 . (1.2.59)

• For I = {2e2}, pI and P I have upper-left and lower-right 2× 2-blocks:

pI =



a11 a12 a13 a14
a21 a22 a23 a13
0 0 −a22 −a12
0 0 −a21 −a11


 , P I =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 ∈ Sp(4,C)

 . (1.2.60)
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(Step 4) For the Levi decompositions pI = lI ⊕ uI and P I ≃ U I ⋊ LI , we have that
lI and LI consist of the diagonal block matrices of pI and P I , whereas uI consists of the
nilpotent matrices of pI , and uI consists of the unipotent matrices of P I .

Note that for a certain r1, . . . , rl−1 ∈ N, nl ∈ N0, such that r1 + . . . + rl−1 ≤ n and
n ≤ r1 + . . .+ rl−1 + 2nl ≤ 2n, LI is isomorphic to the group:

GL(r1,C)× . . .×GL(rl−1,C)× Sp(2nl,C). (1.2.61)
For n = 2, we have I ⊆ △ = {e1 − e2, 2e2}, and:
• For I = {2e2}, the Levi decompositions of pI and P I appear as:

lI =



a11 a12 0 0
a21 a22 0 0
0 0 −a22 −a12
0 0 −a21 −a11


 , LI =



∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗

 ∈ Sp(4,C)

 , (1.2.62)

uI =




0 0 a13 a14
0 0 a23 a13
0 0 0 0
0 0 0 0


 , U I =




1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 0
0 0 0 1

 ∈ Sp(4,C)

 . (1.2.63)

In this case, it is easy to directly verify that pI = lI ⊕ uI and P I ≃ U I ⋊ LI , and
LI ≃ P I/U I .

Through a fixed isomorphism Sp(2n,C) ≃ Sp(2n,C), this example induces analogous
constructions on Sp(2n,C), such as parabolic subgroups PI of Sp(r,C), corresponding
to I ⊆ △.

Remark 1.2.6. We have classified the standard parabolic subgroups of G =
GL(r,C),SL(r,C),SO(r,C),Sp(2n,C), such that they all appear isomorphic to stabi-
lizers of flags F of subspaces of Cr:

F : 0 = V0 ⊊ . . . ⊊ Vl = Cr, (1.2.64)
with respect to the canonical representation ρ : G→ GL(Cr).

In the orthogonal (respectively symplectic) case, these flags F can be refined such that
we have for all i = 0, . . . , l, that Vl−i = V ⊥

i , with respect to the standard nondegenerate
symmetric bilinear form on Cr (respectively the standard symplectic form).

Such flags F are called isotropic flags, since for all i = 0, . . . , l, we have that:
(a) The subspace Vi being isotropic, i.e., Vi ⊆ V ⊥

i , is equivalent to i ≤ l − i.
(b) The subspace Vi being coisotropic, i.e., V ⊥

i ⊆ Vi, is equivalent to i ≥ l − i.
As a special case, maximal standard parabolics are stabilizers of minimal flags. In

the GL(r,C) and SL(r,C) case, they stabilize:
F : 0 = V0 ⊊ V1 ⊊ V2 = Cr. (1.2.65)

In the orthogonal and symplectic case, they stabilize:
F : 0 = V0 ⊊ V1 ⊆ V ⊥

1 ⊊ V ⊥
0 = Cr, (1.2.66)

where it is possible that V1 is both isotropic and coisotropic, i.e., V1 is Lagrangian and
V1 = V ⊥

1 .
These flags turn out to be crucial for many proofs in Chapter 2.
These statements are also proven in [MT12, Proposition 12.13].



CHAPTER 2

Stability in the sense of Ramanathan

In this chapter, we construct holomorphic vector bundles and principal bundles. We
define notions of slope-(semi)-stability for vector bundles, from Mumford in [Mum62],
and Ramanathan-(semi)-stability for principal bundles, from Ramanathan in [Ram75].

For the structure groups GL(r,C), and for r ≥ 2, also SL(r,C), SO(r,C) and
Sp(2n,C), we use the parabolic subgroups we described in Chapter 1 to compare these
notions of stability.

2.1. Vector bundles and principal bundles

2.1.1. Vector bundles and principal bundles
We introduce holomorphic vector bundles and principal bundles as special types of

fiber bundles, where the fibers obtain extra structure. For vector bundles, our main
sources are [GH94] and [Ham17], and for principal bundles, we use [Ham17].

Definition 2.1.1. Let p : ξ → M be a holomorphic map between complex analytic
manifolds. The map p is a fiber bundle on the base space M if:

(i) For all m ∈M , the set ξm = p−1(m) is a complex analytic submanifold of ξ. We
call ξm the fiber of ξ at m.

(ii) For all m ∈ M , there exists an open neighborhood U of m in M , and a biholo-
morphism Φm : p−1(U) → U × ξm, where for the projection pr1 : U × ξm → U ,
we have p|p−1(U) = pr1 ◦ Φm. This is called the local triviality of ξ, and the
isomorphisms Φm, m ∈M , are called local trivializations.

Usually the map p : ξ →M is left unlabeled, and we refer to the fiber bundle by ξ.
Unless otherwise stated, all fiber bundles are constructed on the base space M .
We also have morphisms of fiber bundles, which are holomorphic maps φ : ξ → ξ′

that preserve fibers, similarly to [Ham17, Definition 4.1.6].

Definition 2.1.2. Let E be a fiber bundle, then E is a vector bundle of rank r if:
(i) For all m ∈ M , the fiber Em of E at m is a complex vector space of dimension

r.
(ii) For all m ∈M , there exists a local trivialization Φm : p−1(U)→ U ×Em, where

for all u ∈ U , Φm|Eu : Eu → {u} × Em is an isomorphism of complex vector
spaces.

We also have morphisms of vector bundles, which are morphisms of fiber bundles that
restrict to linear maps on the fibers, similarly to [Ham17, Definition 4.5.7].

Remark 2.1.3. The category of holomorphic vector bundles VecBunM is not an
abelian category, despite having kernels and cokernels. For a morphism φ : E → F
of vector bundles, the homomorphism theorem E/ ker(φ) ≃ im(φ) may not hold. The
reason is that, perhaps counterintuitively, kernels ker(φ) and images im(φ) in VecBunM
do not necessarily coincide with naive fiber-wise kernels and images:

“ ker ”(φ) =
⊔
m∈M

ker(φ|Em), “im”(φ) =
⊔
m∈M

im(φ|Em), (2.1.1)

20
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which may not even be vector bundles.
Kernels and images can still be constructed such that ker(φ) ⊆ “ ker ”(φ) and

“im”(φ) ⊆ im(φ) as sets, and if φ : E → F is of constant rank, these sets are equal.
Let G be a complex Lie group with neutral element e ∈ G.
Definition 2.1.4. Let ξ be a fiber bundle, then ξ is a principal-G-bundle with struc-

ture group G if:
(i) For all m ∈M , the fiber ξm of ξ at m is equipped with a right-G-torsor structure,

i.e., a free and transitive holomorphic right-G-action.
(ii) For all m ∈M , there exists a local trivialization Φm : p−1(U)→ U × ξm, where

for all u ∈ U , Φm|ξu : ξu → {u} × ξm is a G-equivariant biholomorphism.
We also have morphisms of principal bundles, which are morphisms of fiber bundles

that are G-equivariant on the fibers, similarly to [Ham17, Definition 4.2.17].
Remark 2.1.5. Due to the G-equivariance of morphisms of principal bundles, mor-

phisms in the category of principal-G-bundles PrincBunG,M are in fact isomorphisms.
Examples of vector bundles include tangent bundles of curves and manifolds, and

examples of principal bundles include frame bundles of vector bundles.
We now introduce cocycles, which are a useful tool for characterizing fiber bundles,

vector bundles and principal bundles up to isomorphism. Let F be a complex analytic
manifold. We denote the group of biholomorphisms from F to itself by AutHol(F ).

Definition 2.1.6. Let (Ui)i∈I be an open covering of M . A family σij : Ui ∩ Uj →
AutHol(F ) of maps, indexed by i, j ∈ I, written briefly as (σij)i,j∈I , forms cocycles of F
subordinate to (Ui)i∈I if they fulfill the cocycle conditions:

(i) For all i, j ∈ I and all m ∈ Ui ∩ Uj , we have σij(m) = σji(m)−1.
(ii) For all i, j, k ∈ I and all m ∈ Ui ∩ Uj ∩ Uk, we have σij(m) ◦ σjk(m) = σik(m).

We use this to construct cocycles of fiber bundles, vector bundles and principal bun-
dles.

Remark 2.1.7. Let ξ be a fiber bundle, such that all of its fibers are biholomorphic
to each other, and let F be a complex analytic manifold isomorphic to the fibers of ξ.

We choose an open covering (Ui)i∈I of M that trivializes ξ, i.e., for all i ∈ I, there
exists mi ∈ Ui with a local trivialization Φmi : p−1(Ui)→ Ui× ξmi . For all i ∈ I, we then
compose Φmi with a biholomorphism Ui× ξmi → Ui×F to define Φi : p−1(Ui)→ Ui×F ,
also called a local trivialization.

For all i, j ∈ I, we use the projection pr2 : Ui × F → F to define:
σij : Ui ∩ Uj → AutHol(F ), m 7→ [v 7→ pr2 ◦ Φi ◦ Φ−1

j (m, v)]. (2.1.2)
It is easy to show that (σij)i,j∈I fulfills the cocycle conditions from Definition 2.1.6, and
thus (σij)i,j∈I forms cocycles of F , which we call cocycles of ξ.

In the cases of vector bundles and principal-G-bundles, we want cocycles to preserve
the respective structures on their fibers by mapping into groups isomorphic to subgroups
of AutHol(F ). This is possible due to (ii) of Definition 2.1.2 and (ii) of Definition 2.1.4:

(a) Let E be a vector bundle of rank r, we choose the fiber F = Cr. Due to
the linearity of the fibers of E, AutHol(Cr) may be replaced with the subgroup
GL(Cr) of AutHol(Cr).

Through the canonical representation ρ : GL(r,C)→ GL(Cr), we can view
cocycles (σij)i,j∈I of E as maps into GL(r,C).

(b) Let ξ be a principal-G-bundle, we choose the fiber F = G. Due to the
fibers of ξ being right-G-torsors, AutHol(G) may be replaced with the subgroup
AutG−equiv(G) of G-equivariant biholomorphisms from G to itself.
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Since AutG−equiv(G) is canonically isomorphic to G, we can view cocycles
(σij)i,j∈I of ξ as maps into G.

The following lemma explains how cocycles characterize bundles up to isomorphism.

Lemma 2.1.8. Let (σij)i,j∈I be cocycles of F .
(i) The set of equivalence classes η =

⊔
i∈I(Ui×F )/ ∼, with respect to the relation:

(m, v) ∼ (u,w), if there exists i, j ∈ I, such that m = u ∈ Ui ∩ Uj , v = σij(w), (2.1.3)
can be equipped with a unique complex analytic manifold structure, such that the
natural map q : η →M is a fiber bundle.

(ii) The cocycles (σij)i,j∈I of F form cocycles of η.
(iii) Any fiber bundle p : ξ →M , that admits the same cocycles (σij)i,j∈I , is isomor-

phic to η as a fiber bundle.
These statements also hold when replacing fiber bundles with vector bundles or prin-

cipal bundles, by setting F = Cr or F = G, and using (a) and (b) of Remark 2.1.7.

Proof. For (i) and (ii), see the proof of [Ham17, Theorem 4.3.3]. This proof is
written for smooth fiber bundles, but also works for holomorphic fiber bundles, vector
bundles and principal bundles.

For (iii), we consider local trivializations Φi : p−1(Ui) → Ui × F , i ∈ I, that induce
(σij)i,j∈I . For all i ∈ I, we define the fiber-preserving holomorphic map:

φi : p−1(Ui)→ η, v 7→ [Φi(v)]. (2.1.4)
By construction of the equivalence relation ∼, the maps (φi)i∈I agree on their intersec-
tions, gluing to a morphism φ : ξ → η of fiber bundles.

Similarly, φ has an inverse morphism ψ : η → ξ, induced and glued from the following
fiber-preserving holomorphic maps, for i ∈ I:

ψi : Ui × F → ξ, (m, v) 7→ Φ−1
i (m, v). (2.1.5)

Thus, as a fiber bundle, ξ is isomorphic to η.
The proof works analogously for vector bundles and principal bundles. □

This lemma helps us construct frame bundles of vector bundles, which are important
examples of principal bundles.

Example 2.1.9. Let p : E → M be a vector bundle of rank r, with the local trivial-
izations Φi : p−1(Ui) → Ui × Cr, i ∈ I, inducing cocycles (σij)i,j∈I of E. We construct
the frame bundle Fr(E) of E, which is a principal-GL(r,C)-bundle with the underlying
set:

Fr(E) =
⊔
m∈M

IsoC(Cr, Em), (2.1.6)

and the natural map s : Fr(E)→M mapping f ∈ IsoC(Cr, Em) to m.
Using Lemma 2.1.8, (σij)i,j∈I induces a principal-GL(r,C)-bundle q : η → M .

Through the projection pr2 : Ui × Cr → Cr, i ∈ I, and the canonical representation
ρ : GL(r,C)→ GL(Cr), we define the fiber-preserving maps:

φi : s−1(Ui)→ η, f 7→ [s(f), ρ−1(pr2 ◦ Φi ◦ f)]. (2.1.7)
The maps φi, i ∈ I, glue together to a fiber-preserving bijection φ : Fr(E)→ η, through
which we can endow Fr(E) with a principal-GL(r,C)-bundle structure, independent of
the choice of cocycles (σij)i,j∈I .

We also determine the induced right-GL(r,C)-action on Fr(E). For all m ∈ M , the
right-GL(r,C)-action on ηm is given by:

ηm ×GL(r,C)→ ηm, ([m,A], B) 7→ [m,AB]. (2.1.8)
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Through the isomorphism φ : Fr(E) → η, this action induces the following right-
GL(r,C)-action on the fiber of Fr(E) at m:

IsoC(Cr, Em)×GL(r,C)→ IsoC(Cr, Em), (f,A) 7→ [v 7→ f(Av)]. (2.1.9)
As seen in this construction, Fr(E) and E share the same cocycles when both are

viewed as maps into GL(r,C), though the former is a principal-GL(r,C)-bundle, whilst
the latter is a vector bundle.

2.1.2. Subbundles and reductions
We now discuss subbundles of vector bundles and reductions of principal bundles,

and wish to compare them using frame bundles. These constructions are necessary for
defining slope-(semi)-stability and Ramanathan-(semi)-stability.

Definition 2.1.10. Let p : E →M be a vector bundle of rank r. A subset F ⊆ E is
a subbundle of E of rank s if:

(i) For all m ∈M , Fm = F ∩ Em is a complex subspace of Em of dimension s.
(ii) There exists an open covering (Ui)i∈I of M , with local trivializations Φi :

p−1(Ui)→ Ui × Cr, i ∈ I, of E, such that for all i ∈ I, we have:

p−1(Ui × Cs) =
⊔
m∈Ui

Fm. (2.1.10)

By construction, subbundles F of E of rank s form vector bundles of rank s.
Let ξ be a principal-G-bundle, and let H be a closed complex Lie subgroup of G.

Definition 2.1.11. Let F be a complex analytic manifold with a holomorphic left-
H-action ρ : H → AutHol(F ). We define the left-H-action on ξ × F :

H × (ξ × F )→ ξ × F, (h, (v, w)) 7→ (vh−1, ρ(h)(w)), (2.1.11)
and denote the set of left-H-orbits of this action H\(ξ × F ) by ξ(F ), with the elements
[v, w]. We also denote the set of right-H-orbits of the right-G-action on ξ by ξ/H, with
the elements vH.

It can be shown that ξ/H is a fiber bundle, with fibers biholomorphic to G/H.
Moreover, ξ(F ) is a fiber bundle on ξ/H, with fibers biholomorphic to F , called the
associated bundle of ξ with respect to F .

Sometimes, we have H = G, and hence ξ(F ) is a fiber bundle on ξ/H = M . In this
case, if (σij)i,j∈I are cocycles of ξ, then (ρ ◦ σij)i,j∈I are cocycles of ξ(F ).

In special cases, the bundle ξ(F ) is a vector bundle or a principal bundle.
(a) If F = V is a complex vector space of dimension r, and if ρ : H → GL(V ) is a

representation, then ξ(V ) is a vector bundle on ξ/H of rank r.
(b) If F = G′ is a complex Lie group, and if ρ : H → AutG′−equiv(G′), then ξ(G′) is

a principal-G′-bundle on ξ/H.
We present some examples of associated bundles, including adjoint bundles, determi-

nant bundles and induced vector bundles.

Example 2.1.12. (a) The adjoint representation Ad : G → GL(g) induces the
adjoint bundle ad(ξ) = ξ(g), which is an associated bundle of ξ with respect to
g. Since g is a Lie algebra, ad(ξ) also forms a Lie algebra bundle.

(b) For a vector bundle E of rank r, the determinant det : GL(r,C) → GL(C)
induces an associated bundle det(E) = (Fr(E))(C) of Fr(E), called the determi-
nant bundle, which is a vector bundle of rank 1, i.e., a line bundle.

(c) Let G be a closed complex Lie subgroup of GL(r,C), i.e., a matrix Lie group.
The canonical representation ρ : G → GL(Cr) induces a vector bundle Eξ =
ξ(Cr) of rank r, which called the induced vector bundle of ξ.
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(d) The complex analytic manifold G/H carries the canonical left-G-action, which
induces an associated bundle ξ(G/H) with respect to G/H.

It is easy to show that:
φ : ξ/H → ξ(G/H), vH 7→ [v, eH], (2.1.12)

defines an isomorphism of fiber bundles. Thus, ξ/H is isomorphic to an associ-
ated bundle of ξ with respect to G/H.

Using associated bundles, we define reductions and extensions of principal bundles.

Definition 2.1.13. (a) For a morphism φ : G→ G′ of complex Lie groups, the
principal-G′-bundle ξ(G′) is the extension of ξ to G′.

(b) Let ξH be a principal-H-bundle, such that for the inclusion H ↪→ G inducing the
extension ξH(G), there exists an isomorphism φ : ξH(G)→ ξ. We call (ξH , φ) a
reduction pair of ξ to H.

(c) Two reduction pairs (ξH , φ) and (ξ′
H , φ

′) are called isomorphic, if there exists an
isomorphism ξH ≃ ξ′

H of principal bundles, such that:

ξH → ξH(G) φ→ ξ is equal to ξH ≃ ξ′
H → ξ′

H(G) φ′
→ ξ. (2.1.13)

The following lemma allows us to identify isomorphism classes of reduction pairs with
sections.

Lemma 2.1.14. The following are in correspondence:
(i) Isomorphism classes of reduction pairs (ξH , φ) of ξ to H.

(ii) Sections σ : M → ξ/H of ξ/H.

Proof. For (i) to (ii), an isomorphism class of reduction pairs (ξH , φ) induces a
morphism ξH → ξ/H. This morphism maps whole fibers of ξH to elements of ξ/H, hence
ξH → ξ/H factorizes through a section σ : M → ξ/H.

For (ii) to (i), given σ : M → ξ/H, consider the pullback bundle σ∗ξ, which is a
principal-H-bundle where for all m ∈M , the fiber is (σ∗ξ)m = σ(m).

We can construct an isomorphism φ : (σ∗ξ)(G)→ ξ, given on the fibers m ∈M by:
(σ∗ξ)(G)m = H\(σ(m)×G)→ ξm, [v, g] 7→ vg. (2.1.14)

such that (σ∗ξ, φ) defines an isomorphism class.
As these two constructions are inverse to each other, the claim follows. □

In practice, we are only interested in isomorphism classes of reduction pairs of ξ to
H, corresponding to sections σ : M → ξ/H, which we call reductions σ∗ξ of ξ to H.

Note that reductions induce the commutative diagram:

σ∗ξ ξ

M ξ/H
σ

. (2.1.15)
The following lemma establishes a correspondence between certain reductions of

principal-GL(r,C)-bundles and nontrivial subbundles of their induced vector bundles.

Lemma 2.1.15. Let ξ be a principal-GL(r,C)-bundle, with the induced vector bundle
Eξ. In the notation of Subsection 1.2.1, let s = 1, . . . , r − 1, and let PI be the maxi-
mal standard parabolic subgroup of GL(r,C), corresponding to I = {αs,s+1} ⊆ △. The
following are in correspondence:

(i) Subbundles F ̸= 0, Eξ of Eξ of rank s.
(ii) Reductions σ∗ξ of ξ to PI .
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Proof. There exists a canonical isomorphism φ : ξ → Fr(Eξ) of principal bundles.
Let (e1, . . . , er) be the canonical C-basis of Cr, then for all m ∈M , φ is given by:

ξm → Fr(Eξ)m = IsoC(Cr,GL(r,C)\(ξm × Cr)), v 7→ [ei 7→ [v, ei]]. (2.1.16)

We start from (i) to (ii). From a subbundle F ̸= 0, Eξ of Eξ, we induce a section
σ′ : M → Fr(Eξ)/PI , m 7→ σ′(m) ∈ IsoC(Cr, (Eξ)m)/PI , where σ′(m) represents the
isomorphisms Cr → (Eξ)m that restrict to Cs → Fm. Through φ : ξ → Fr(Eξ), σ′

corresponds to a reduction σ∗ξ of ξ to PI .
For (ii) to (i), σ induces a section σ′ : M → Fr(Eξ)/PI through φ. Then for all

m ∈ M , Fm = σ′(m)(Cs) is a well-defined subspace of (Eξ)m. Since σ′ is a section, the
sets Fm, m ∈M , glue to a subbundle F ̸= 0, Eξ of Eξ.

As these two constructions are inverse to each other, the claim follows. □

Analogous versions of Lemma 2.1.15 exist for different structure groups. We wish to
present a special orthogonal version, for which we first need to construct special orthogo-
nal vector bundles, which are orthogonal vector bundles that are special vector bundles.

For a line bundle p : L → M isomorphic to the product bundle M × C, global
trivializations Φ : L→ M × C correspond to everywhere nonzero sections τ : M → L as
follows:

{Global trivializations of L} ↔ {Everywhere nonzero sections of L} (2.1.17)
Φ 7→ τΦ = [m 7→ Φ−1(m, 1)], (2.1.18)

Φτ = [v 7→ (p(v), λ), v = λτ(m)]←[ τ. (2.1.19)

Through this correspondence, we can define special vector bundles. Let E be a vector
bundle of rank r.

Definition 2.1.16. A special vector bundle (E, τ) consists of a vector bundle E,
whose determinant bundle det(E) is isomorphic to the product bundle M × C, and an
everywhere nonzero section τ : M → det(E).

Similarly to the frame bundles from Example 2.1.9, we can construct special frame
bundles of special vector bundles.

Remark 2.1.17. For a special vector bundle (E, τ), we can construct a special frame
bundle FrSL(E, τ), which is a principal-SL(r,C)-bundle, whose underlying set is:

FrSL(E, τ) =
⊔
m∈M

SIsoτC(Cr, Em), (2.1.20)

where SIsoτC(Cr, Em) = {f ∈ IsoC(Cr, Em)|[f, 1] = τ(m)}.
The right-SL(r,C)-action on the fibers m ∈M is given by:

SIsoτC(Cr, Em)× SL(r,C)→ SIsoτC(Cr, Em), (f,A) 7→ [v 7→ f(Av)], (2.1.21)

which is well-defined.

Before we construct orthogonal vector bundles, we remind ourselves of direct sums
and dual bundles of vector bundles.

Definition 2.1.18. Let E be a vector bundle of rank r, and let F be a vector bundle
of rank s.

(a) The direct sum E ⊕ F is a vector bundle of rank r + s with the underlying set
E ⊕ F =

⊔
m∈M Em ⊕ Fm.

The local trivializations of E ⊕ F are direct sums of local trivializations of
E and F .
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(b) The dual bundle E∗ of E is a vector bundle of rank r with the underlying set
E∗ =

⊔
m∈M E∨

m.
The local trivializations of E∗ are induced from local trivializations of E.

Definition 2.1.19. (a) An orthogonal vector bundle (E, β) consists of a vector
bundle E admitting a nondegenerate symmetric bilinear form β : E⊕E → C, i.e.,
a holomorphic map such that for all m ∈M , βm = β|Em⊕Em is a nondegenerate
symmetric bilinear form.

(b) For an orthogonal vector bundle (E, β), a subbundle F of (E, β) is (co)-isotropic,
if for all m ∈M , Fm is a (co)-isotropic subspace of Em, with respect to βm.

A subbundle F of (E, β) is called Lagrangian, if F is isotropic and coisotropic.

Remark 2.1.20. Let (E, β) be an orthogonal vector bundle.
(a) The vector bundle E is self-dual, as there exists an isomorphism of vector bun-

dles:
E → E∗, v 7→ β(_, v). (2.1.22)

(b) We can construct an orthogonal frame bundle FrO(E, β), which is a principal-
O(r,C)-bundle, whose underlying set is:

FrO(E, β) =
⊔
m∈M

OrthβC(Cr, Em), (2.1.23)

where OrthβC(Cr, Em) consists of isomorphisms f ∈ IsoC(Cr, Em), such that for
the standard nondegenerate symmetric bilinear form ⟨_,_⟩ on Cr, and for all
v, w ∈ Cr, we have:

⟨v, w⟩ = βm(f(v), f(w)). (2.1.24)

We can now combine orthogonal vector bundles and special vector bundles to con-
struct special orthogonal vector bundles.

Definition 2.1.21. A special orthogonal vector bundle (E, β, τ) consists of an orthog-
onal vector bundle (E, β) that is also a special vector bundle (E, τ).

By construction, special orthogonal vector bundles inherit all the properties of or-
thogonal vector bundles and special vector bundles.

Remark 2.1.22. Let (E, β, τ) be a special orthogonal vector bundle. We can construct
a special orthogonal frame bundle FrSO(E, β, τ), which is a principal-SO(r,C)-bundle,
whose underlying set is:

FrSO(E, β, τ) =
⊔
m∈M

SOrthβ,τC (Cr, Em), (2.1.25)

where SOrthβ,τC (Cr, Em) = OrthβC(Cr, Em) ∩ SIsoτC(Cr, Em).

We now present the special orthogonal version of Lemma 2.1.15.

Lemma 2.1.23. Let r ≥ 3, and let ξ be a principal-SO(r,C)-bundle. The induced
vector bundle Eξ admits the structure of a special orthogonal vector bundle (Eξ, β, τ). We
write r = 2n+ 1 if r is odd, and r = 2n if r is even. In the notation of Subsection 1.2.2,
let s = 1, . . . , n, and let PI be the standard parabolic subgroup of SO(r,C), corresponding
to:

I = {es − es+1} ⊆ △, s ̸= n− 1, n, (2.1.26)
I = {en−1 − en} ⊆ △, s = n− 1, r is odd, (2.1.27)
I = {en} ⊆ △, s = n, r is odd, (2.1.28)
I = {en − en+1, en + en+1} ⊆ △, s = n− 1, r is even, (2.1.29)
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I = {en−1 + en} ⊆ △, s = n, r is even. (2.1.30)

The following are in correspondence:
(i) Isotropic subbundles F ̸= 0 of (Eξ, β) of rank s.

(ii) Reductions σ∗ξ of ξ to PI .

Proof. Similarly to the proof of Lemma 2.1.15, there exists a canonical isomorphism
φ : ξ → FrSO(Eξ, β, τ) of principal bundles.

Using Remark 1.2.6, PI is the stabilizer of a flag:

F : 0 = V0 ⊊ V1 ⊆ V ⊥
1 ⊊ V ⊥

0 = Cr, (2.1.31)

such that dimC(V1) = s and dimC(V ⊥
1 ) = r − s.

We start from (i) to (ii). From an isotropic subbundle F ̸= 0 of (Eξ, β), we induce
a section σ′ : M → FrSO(Eξ, β, τ)/PI , m 7→ σ′(m) ∈ SOrthβ,τC (Cr, (Eξ)m)/PI , where
σ′(m) represents the special orthogonal maps Cr → (Eξ)m that restrict to V ⊥

1 → F⊥
m and

further to V1 → Fm. Through φ : ξ → FrSO(Eξ, β, τ), σ′ corresponds to a reduction σ∗ξ
of ξ to PI .

For (ii) to (i), σ induces a section σ′ : M → FrSO(Eξ, β, τ)/PI through φ. Then for
all m ∈M , Fm = σ′(m)(V1) is a well-defined isotropic subspace of (Eξ)m, since:

Fm = σ′(m)(V1) ⊆ σ′(m)(V ⊥
1 ) = σ′(m)(V1)⊥ = F⊥

m . (2.1.32)

Since σ′ is a section, the sets Fm, m ∈M , glue to an isotropic subbundle F ̸= 0 of (Eξ, β).
As these two constructions are inverse to each other, the claim follows. □

In the case where ξ is a principal-SO(2,C)-bundle, this correspondence cannot apply,
as there exists no maximal parabolic subgroups of SO(2,C). Instead, nontrivial isotropic
subbundles of (Eξ, β) directly correspond to sections σ of ξ.

Finally, we construct a symplectic analog of Lemma 2.1.15 and Lemma 2.1.23.

Definition 2.1.24. Let E be a vector bundle of rank 2n.
(a) A symplectic vector bundle (E, β) consists of a vector bundle E admitting a

symplectic form β : E ⊕ E → C, i.e., a holomorphic map such that for all
m ∈M , βm = β|Em⊕Em is a symplectic form.

(b) For a symplectic vector bundle (E, β), a subbundle F of (E, β) is (co)-isotropic,
if for all m ∈M , Fm is a (co)-isotropic subspace of Em, with respect to βm.

A subbundle F of (E, β) is called Lagrangian, if F is isotropic and coisotropic.

Remark 2.1.25. Let (E, β) be a symplectic vector bundle of rank 2n.
(a) The vector bundle E is self-dual, as there exists an isomorphism of vector bun-

dles:
E → E∗, v 7→ β(_, v). (2.1.33)

(b) We can construct a symplectic frame bundle FrSp(E, β), which is a principal-
Sp(2n,C)-bundle, whose underlying set is:

FrSp(E, β) =
⊔
m∈M

SpβC(C2n, Em), (2.1.34)

whereby SpβC(C2n, Em) consists of isomorphisms f , such that for the standard
symplectic form ⟨_,_⟩ on C2n, and for all v, w ∈ C2n, we have:

⟨v, w⟩ = βm(f(v), f(w)). (2.1.35)

Lemma 2.1.26. Let ξ be a principal-Sp(2n,C)-bundle. The induced vector bundle Eξ
admits the structure of a symplectic vector bundle (Eξ, β). In the notation of Subsection
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1.2.3, let s = 1, . . . , n, and let PI be the maximal standard parabolic subgroup of Sp(2n,C),
corresponding to:

I = {es − es+1} ⊆ △, s ̸= n, (2.1.36)
I = {2en} ⊆ △, s = n. (2.1.37)

The following are in correspondence:
(i) Isotropic subbundles F ̸= 0 of (Eξ, β) of rank s.

(ii) Reductions σ∗ξ of ξ to PI .

Proof. Analogous to that of Lemma 2.1.23, where we replace special orthogonal
frame bundles with symplectic frame bundles. □

2.2. Stability in the sense of Ramanathan

We want to define notions of slope-(semi)-stability of vector bundles, and of
Ramanathan-(semi)-stability of principal bundles. Using the correspondences we found
between subbundles of vector bundles and reductions of frame bundles, we can compare
these two notions of stability.

2.2.1. Stability in the sense of Ramanathan
For these definitions of stability, we must first define degrees and slopes of vector

bundles, for which our setting needs an extra assumption on the base space. Unless
otherwise stated, bundles are now constructed on a compact connected Riemann surface
X.

Definition 2.2.1. (a) Let σ : X → L a nontrivial meromorphic section of a line
bundle. We define the zeros of σ as Z(σ) = {x ∈ X|σ(x) = 0}, and the poles of
σ as P(σ) = {x ∈ X|(1/σ)(x) = 0}.

The order of σ at x ∈ Z(σ) is the multiplicity of the zero of σ at x, and at
x ∈ P(σ), it is the multiplicity of the zero of (1/σ) at x.

The degree of σ is defined as:

deg(σ) =
∑

x∈Z(σ)
ordx(σ)−

∑
x∈P(σ)

ordx(σ). (2.2.1)

(b) Let E ̸= 0 be a vector bundle of rank r. The degree deg(E) of E is the degree
deg(σ) of a nontrivial meromorphic section σ of the determinant bundle det(E)
of E.

These definitions are well-defined, since it can be shown that:
(a) The degree in (2.2.1) is a well-defined integer, since X is compact.
(b) For a line bundle L on a compact connected Riemann surface, nontrivial mero-

morphic sections are guaranteed to exist.
(c) For two nontrivial meromorphic sections σ and σ′ on the same line bundle L, we

have deg(σ) = deg(σ′).
Degrees store useful topological properties of vector bundles, intuitively speaking,

how they globally “twist”. We now state the additivity of degrees of vector bundles, using
tensor bundles.

Definition 2.2.2. Let E be a vector bundle of rank r, and let F be a vector bundle
of rank s. The tensor bundle E⊗F of E is a vector bundle of rank rs with the underlying
set E ⊗ F =

⊔
m∈M Em ⊗ Fm.

The local trivializations of E ⊗ F are induced from local trivializations of E and F .
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Remark 2.2.3. For a short exact sequence of nontrivial vector bundles:

0→ E′ → E → E′′ → 0, (2.2.2)

we have deg(E) = deg(E′) + deg(E′′), which is called the additivity of degrees of vector
bundles. This is proven by showing that there exists an isomorphism:

det(E) ≃ det(E′)⊗ det(E′′), (2.2.3)

of determinant bundles, and then comparing meromorphic sections between det(E) and
det(E′)⊗ det(E′′).

Using degrees of vector bundles, we can define slopes, leading to the notion of slope-
(semi)-stability, from [Mum62].

Definition 2.2.4. Let E ̸= 0 be a vector bundle of rank r.
(a) The slope of E is µ(E) = deg(E)/r.
(b) The bundle E is slope-stable if all subbundles F ̸= 0, E of E fulfill µ(F ) < µ(E).
(c) The bundle E is slope-semistable if all subbundles F ̸= 0, E of E fulfill µ(F ) ≤

µ(E).

It is clear that slope-stability implies slope-semistability.
As an example, line bundles are slope-stable since they have no nontrivial subbundles.
We now define Ramanathan-(semi)-stability for principal bundles, as in [Ram75].

Let G be a connected complex reductive group and let ξ be a principal-G-bundle. We
investigate the adjoint representation Ad : G→ GL(g).

Remark 2.2.5. For a parabolic subgroup P of G, let σ∗ξ be a reduction of ξ to P .
Since P is a complex algebraic subgroup of G, the adjoint representation Ad : P → GL(g)
induces representations Ad : P → GL(p) and Ad : P → GL(g/p), inducing the associated
vector bundles (σ∗ξ)(g), (σ∗ξ)(p) and (σ∗ξ)(g/p). For these vector bundles, we have that:

(a) There exists an isomorphism φ : (σ∗ξ)(g) → ad(ξ), given on the fibers x ∈ X
by:

(σ∗ξ)(g)x = P\(σ(x)× g)→ ad(ξ)x = G\(ξx × g), [v, Y ] 7→ [v, Y ]. (2.2.4)

(b) By definition, (σ∗ξ)(p) is the adjoint bundle ad(σ∗ξ).
(c) The derivative of the fiber bundle p : ξ/P → X is a morphism Dp : T (ξ/P ) →

TX of vector bundles of full rank, with a change of base space:

T (ξ/P )

ξ/P

TX

X
p

Dp

. (2.2.5)

The kernel Vξ/P = ker(Dp) of Dp is a well-defined subbundle of T (ξ/P ) on
the base space ξ/P , called the vertical tangent subbundle of ξ/P .

In the proof of [Ram75, Lemma 2.1], it is stated that Vξ/P is isomorphic to the
associated bundle ξ(g/p) on ξ/P , induced by Ad : P → GL(g/p). Thus, through
the reduction σ : X → ξ/P , we obtain a vector bundle σ∗Vξ/P isomorphic to
σ∗(ξ(g/p)) ≃ (σ∗ξ)(g/p).

We can now define Ramanathan-(semi)-stability, as seen in [Ram75, Definition 1.1].

Definition 2.2.6. The bundle ξ is Ramanathan-(semi)-stable, if for all maximal par-
abolic subgroups P of G, and for all reductions σ∗ξ of ξ to P , we have deg(σ∗Vξ/P )(≥)0.
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In order to verify Ramanathan-(semi)-stability, it suffices to only verify the inequality
for reductions to maximal standard parabolic subgroups of G, with respect to a fixed Borel
subgroup B ofG. This is due to the conjugacy of parabolic subgroups from Remark 1.1.26.

We aim to prove that Ramanathan-(semi)-stability can also be equivalently verified
through the inequality deg(ad(σ∗ξ))(≤)0, for which we need the following remark.

Remark 2.2.7. Let σ∗ξ be a reduction of ξ to a parabolic subgroup P of G.
(a) We observe the short exact sequence of complex vector spaces:

0→ p→ g→ g/p→ 0. (2.2.6)
Since ad(σ∗ξ), ad(ξ) and σ∗Vξ/P are isomorphic to associated bundles of σ∗ξ,
with respect to the adjoint representation of P acting on (2.2.6), we obtain the
short exact sequence of vector bundles:

0→ ad(σ∗ξ)→ ad(ξ)→ σ∗Vξ/P → 0. (2.2.7)
(b) Since g is reductive, Theorem 1.1.5 implies that there exists a nondegenerate

symmetric ad-invariant bilinear form on g, which is thus also Ad-invariant.
Using that ad(ξ) is induced by the adjoint representation Ad : G→ GL(g),

this bilinear form induces a nondegenerate symmetric bilinear form β on ad(ξ),
such that (ad(ξ), β) is an orthogonal vector bundle.

Remark 2.2.8. Let E ̸= 0 be a vector bundle of rank r. By verifying that det(E)⊗
det(E∗) is isomorphic to the product bundle X × C, we have that deg(E) = −deg(E∗).

Lemma 2.2.9. The following are equivalent:
(i) The bundle ξ is Ramanathan-(semi)-stable.

(ii) For all maximal parabolic subgroups P of G, and for all reductions σ∗ξ of ξ to
P , we have deg(ad(σ∗ξ))(≤)0.

Proof. Due to the additivity of degrees from Remark 2.2.3, we have:
deg(ad(ξ)) = deg(ad(σ∗ξ)) + deg(σ∗Vξ/P ), (2.2.8)

from the short exact sequence in (2.2.7).
Since ad(ξ) is self-dual due to (a) of Remark 2.1.20, we use that degrees are invariant

under isomorphisms to imply deg(ad(ξ)) = −deg(ad(ξ)), using Remark 2.2.8. Thus,
deg(ad(ξ)) = 0, and deg(ad(σ∗ξ)) = −deg(σ∗Vξ/P ), from which the equivalence is clear.

□

We now want to compare Ramanathan-(semi)-stability for the structure groups
GL(r,C), SO(r,C) and Sp(2n,C), to slope-(semi)-stability.

2.2.2. The case of GL(r,C)
For a principal-GL(r,C)-bundle ξ, we aim to prove that the correspondence in Lemma

2.1.15 preserves the notions of slope-(semi)-stability and Ramanathan-(semi)-stability,
following [HM04, Proposition 1] and [HM04, Corollary 1].

Before stating this result, we need to find an appropriate isomorphism on vertical
tangent bundles. For this, we construct quotient bundles and their cocycles.

Let E ̸= 0 be a vector bundle of rank r.

Definition 2.2.10. For a subbundle F of p : E → X of rank s, the quotient bundle
E/F is a vector bundle of rank r − s with the underlying set E/F =

⊔
m∈M Em/Fm.

For the local trivializations Φi, i ∈ I, of E, from (a) of Definition 2.1.10, we define
local trivializations Ψi, i ∈ I, of E/F , using the projection pr2 : Ui × Cr → Cr:

Ψi :
⊔
m∈Ui

Em/Fm → Ui × (Cr/Cs), [v] 7→ (p(v), [pr2 ◦ Φi(v)]). (2.2.9)



Canonical reductions of principal bundles 31

From the proof of Lemma 2.1.15, we can relate cocycles of vector bundles with cocycles
of their subbundles and quotients.

Remark 2.2.11. Let F be a subbundle of E of rank s. There exists cocycles (σij)i,j∈I
of E mapping into PI , where I = {αs,s+1} ⊂ △:

σij : Ui ∩ Uj → PI ,m 7→
(
αij(m) βij(m)

0 δij(m)

)
, i, j ∈ I, (2.2.10)

and (αij)i,j∈I forms cocycles of F , and (δij)i,j∈I forms cocycles of E/F .
Note that if we are first given the existence of cocycles (σij)i,j∈I of E in the form

of (2.2.10), we can also induce a subbundle F of E of rank s, admitting the cocycles
(αij)i,j∈I .

Lemma 2.2.12. Let ξ be a principal-GL(r,C)-bundle. In the notation of Subsection
1.2.1, let s = 1, . . . , r − 1, and let PI be the maximal standard parabolic subgroup of
GL(r,C), corresponding to I = {αs,s+1} ⊆ △.

Let σ∗ξ be any reduction of ξ to PI , and let F ̸= 0, Eξ be the corresponding subbundle
of Eξ of rank s, through Lemma 2.1.15. We claim that:

σ∗Vξ/PI
≃ F ∗ ⊗ (Eξ/F ), (2.2.11)

as vector bundles.

Proof. Let (σij)i,j∈I be cocycles of σ∗ξ and Eξ, which map into PI , in the form of
(2.2.10), such that (αij)i,j∈I forms cocycles of F and (δij)i,j∈I forms cocycles of Eξ/F . To
find cocycles (τij)i,j∈I of σ∗Vξ/PI

, we compose (σij)i,j∈I with Ad : PI → GL(gl(r,C)/pI).
Firstly, we calculate:

Ad
(
a b
0 d

)(
∗ ∗
C ∗

)
=
(
a b
0 d

)(
∗ ∗
C ∗

)(
a b
0 d

)−1
, (2.2.12)

=
(
a b
0 d

)(
∗ ∗
C ∗

)(
a−1 ∗
0 d−1

)
, (2.2.13)

=
(
∗ ∗

dCa−1 ∗

)
. (2.2.14)

Hence, the cocycles (τij)i,j∈I are of the form x 7→ [C 7→ δij(x)Cαij(x)−1], otherwise
written x 7→ (αij(x)−1)T ⊗ δij(x), where ⊗ denotes the Kronecker-product of matrices.
Following [GH94, 0.5], these are cocycles of F ∗ ⊗ (Eξ/F ), so the claim of the lemma
follows. □

With this isomorphism, it becomes easy to translate between Ramanathan-(semi)-
stability and slope-(semi)-stability.

We now use the following results on degrees of vector bundles. Let E ̸= 0 be a vector
bundle of rank r.

Remark 2.2.13. (a) Using the additivity of degrees, if F is a subbundle of E,
then deg(E/F ) = deg(E)− deg(F ).

(b) For a vector bundle F ̸= 0 of rank s, we have deg(E⊗F ) = deg(E)s+ deg(F )r.

Theorem 2.2.14. Let ξ be a principal-GL(r,C)-bundle. The following are equivalent:
(i) The principal bundle ξ is Ramanathan-(semi)-stable.

(ii) The induced vector bundle Eξ is slope-(semi)-stable.

Proof. Any subbundle F ̸= 0, Eξ of Eξ of rank s = 1, . . . , r − 1, corresponds to a
reduction σ∗ξ of ξ, through Lemma 2.1.15. Due to Lemma 2.2.12, we have:

deg(σ∗Vξ/PI
) = deg(F ∗ ⊗ (Eξ/F )), (2.2.15)
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using properties of degrees from Remark 2.2.13, we have:

= −deg(F )(r − s) + deg(Eξ/F )s, (2.2.16)
= −deg(F )(r − s) + deg(Eξ)s− deg(F )s, (2.2.17)
= −deg(F )r + deg(Eξ)s. (2.2.18)

Thus, deg(σ∗Vξ/PI
)(≥)0 is equivalent to µ(F )(≤)µ(Eξ), so the theorem follows. □

2.2.3. The cases of SO(r,C) and Sp(2n,C)
We also want special orthogonal and symplectic versions of Theorem 2.2.14, though

proving this is more involved, since isomorphisms analogous to (2.2.11) of Lemma 2.2.12
are harder to describe. We start with the special orthogonal case, and state some results
about (co)-isotropic subbundles of special orthogonal vector bundles.

For this subsection, let r ≥ 2, and write r = 2n+1 if r is odd, and r = 2n if r is even.

Lemma 2.2.15. Let (E, β, τ) be a special orthogonal vector bundle of rank r. For all
isotropic subbundles F of (E, β) of rank s = 1, . . . , n, we denote:

F⊥ =
⊔
x∈X

F⊥
x . (2.2.19)

(i) The set F⊥ is a coisotropic subbundle of (E, β) of rank r − s.
(ii) The bilinear form β and the section τ restricts to βF and τF , such that

(F⊥/F, βF , τF ) is a special orthogonal vector bundle of rank r − 2s.
Furthermore, F is isomorphic to the dual bundle (E/F⊥)∗.

(iii) If F ̸= 0, we have:

deg(F ) = −deg(E/F⊥) = −deg(E/F ) = deg(F⊥). (2.2.20)

Proof. For (i) and (ii), the claim is trivial for F = 0 or r = 2, so we assume F ̸= 0
and r ≥ 3.

Due to Lemma 2.1.23, F corresponds to a parabolic reduction σ∗FrSO(E, β, τ) of
FrSO(E, β, τ), which induces F⊥ as coisotropic subbundle of E, proving (i).

We now prove (ii). The parabolic reduction σ∗FrSO(E, β, τ) induces cocycles (σij)i,j∈I
of E mapping into PI , and through the isomorphism PI ≃ P I , we also induce cocycles
(σij)i,j∈I of E mapping into P I .

The group P I consists of matrices of the form:

Ma,b,c,d =

a b c
0 d −Kr−2s(d−1)T (bT )(a−1)TKs

0 0 Ks(a−1)TKs

 , (2.2.21)

with a ∈ GL(s,C), b ∈ Mat(s×(r−2s),C), c ∈ Mat(s×s,C) and d ∈ SO(r−2s,C), such
that Ks(a−1)c+ cTKs(a−1)TKs +Ks(a−1)bKr−2sb

T (a−1)TKs = 0. Due to this, (σij)i,j∈I
is of the form:

σij : Ui ∩ Uj → P I ,m 7→

αij(m) βij(m) . . .
0 δij(m) . . .
0 0 Ks(αij(m)−1)TKs

 , (2.2.22)

where (αij)i,j∈I form cocycles of F , (δij)i,j∈I form cocycles of F⊥/F , Ks(αij(m)−1)TKs

form cocycles of E/F⊥, and cocycles of F⊥ are of the form (2.2.10) from Remark 2.2.11.
Through these cocycles, we find canonical isomorphisms F ≃ (E/F⊥)∗ and det(E) ≃

det(F⊥/F ), inducing βF and τF , such that (F⊥/F, βF , τF ) is a special orthogonal vector
bundle of rank r − 2s.



Canonical reductions of principal bundles 33

We now prove (iii). Since F⊥/F is self-dual, the additivity of degrees of vector bundles
implies that deg(F ) = deg(F⊥) + deg(F⊥/F ) = deg(F⊥). Since E is also self-dual, the
equality:

deg(E) = deg(F ) + deg(F⊥/F ) + deg(E/F⊥), (2.2.23)

implies deg(F ) = −deg(E/F⊥). Furthermore, we have:

deg(E/F ) = deg(E/F⊥) + deg(F⊥/F ) = deg(E/F⊥). (2.2.24)

□

We can now present a special orthogonal version of Lemma 2.2.12.

Lemma 2.2.16. Let r ≥ 3, and let ξ be a principal-SO(r,C)-bundle. The induced
vector bundle Eξ admits the structure of a special orthogonal vector bundle (Eξ, β, τ). We
write r = 2n+ 1 if r is odd, and r = 2n if r is even.

Let F ̸= 0 be an isotropic subbundle of (Eξ, β) of rank s = 1, . . . , n. Through Lemma
2.1.23, F induces a reduction of ξ to a standard parabolic subgroup PI of SO(r,C), in
the notation of Subsection 1.2.2, corresponding to I ⊆ △. We claim that:

det(σ∗Vξ/PI
) ≃ det(F ∗ ⊗ (F⊥/F ))⊗ (det(F ∗)⊗(s−1)), F ̸= F⊥, (2.2.25)

det(σ∗Vξ/PI
) ≃ det(F ∗)⊗(s−1), F = F⊥, (2.2.26)

where (F ∗)⊗(s−1) denotes the vector bundle F ∗ tensored with itself s− 1-times.

Proof. Since SO(r,C) ≃ SO(r,C), we induce a principal-SO(r,C)-bundle ξ =
ξ(SO(r,C)) as an extension of ξ. The reduction σ∗ξ of ξ induces a reduction σ∗ξ
of ξ to P I . By composing cocycles (σij)i,j∈I of σ∗ξ with the adjoint representation
Ad : P I → GL(so(r,C)/pI), we obtain cocycles (τ ij)i,j∈I of σ∗Vξ/P I

, which is isomorphic
to σ∗Vξ/PI

as a vector bundle.
In order to determine (det◦τ ij)i,j∈I , we want to calculate Ad : P I → GL(so(r,C)/pI).

We first handle the case F ̸= F⊥. The complex vector space so(r,C)/pI consists of classes
of matrices:

ND,G =

 ∗ ∗ ∗
D ∗ ∗
G −KsD

TKr−2s ∗

 , (2.2.27)

with D ∈ Mat((r − 2s)× s,C) and G ∈ so(s,C). Thus, we have so(r,C)/pI ≃ Mat((r −
2s) × s,C) × so(s,C) as complex vector spaces. We can then calculate Ad : P I →
GL(so(r,C)/pI), using the description of matrices Ma,b,c,d in P I from (2.2.21):

Ad(Ma,b,c,d)(ND,G) (2.2.28)

=

. . . . . . . . .
0 d −Kr−2s(d−1)T (bT )(a−1)TKs

0 0 Ks(a−1)TKs

 ∗ ∗ ∗
D ∗ ∗
G . . . ∗

a−1 . . . . . .
0 . . . . . .
0 0 . . .

 ,
(2.2.29)

=

 ∗ ∗ ∗
dD −Kr−2s(d−1)T (bT )(a−1)TKsG ∗ ∗

Ks(a−1)TKsG . . . ∗

a−1 . . . . . .
0 . . . . . .
0 0 . . .

 , (2.2.30)

=

 ∗ ∗ ∗
dDa−1 −Kr−2s(d−1)T (bT )(a−1)TKsGa

−1 ∗ ∗
Ks(a−1)TKsGa

−1 . . . ∗

 . (2.2.31)
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We observe the matrix:(
(a−1)T ⊗ d (a−1)T ⊗−Kr−2s(d−1)T (bT )(a−1)TKs

0 (a−1)T ⊗Ks(a−1)TKs

)
, (2.2.32)

where ⊗ denotes the Kronecker-product of matrices. This matrix represents Ad(Ma,b,c,d)
as an endomorphism on Mat((r − 2s)× s,C)× so(s,C), acting on the pair (D,G).

The determinant of Ad(Ma,b,c,d) is then the product of the determinants of the diag-
onal blocks from (2.2.32), acting as endomorphisms on Mat((r− 2s)× s,C) and so(s,C)
respectively.

The upper-left block of (2.2.32) has the determinant det((a−1)T ⊗ d) =
det((a−1)T )r−2sdet(d)s. The lower-right block of (2.2.32) acting on Mat(s × s,C), a
complex vector space of dimension s2, has the determinant det((a−1)T ⊗Ks(a−1)TKs) =
det((a−1)T )2s. When this block is restricted to acting on so(s,C), a complex vector space
of dimension s(s− 1)/2, we have the determinant:

det((a−1)T )2s s(s−1)/2
s2 = det((a−1)T )s−1. (2.2.33)

Thus, we find that (det ◦ τ ij)i,j∈I is the product of cocycles of det(F ∗⊗ (F⊥/F )) and
det(F ∗)⊗(s−1). The isomorphism in (2.2.25) then follows.

For the case of F = F⊥, the calculations are the same, apart from removing the middle
rows and columns in (2.2.27). . .(2.2.31). The isomorphism in (2.2.26) then follows. □

If ξ is a principal-SO(2,C)-bundle, nontrivial isotropic subbundles of Eξ correspond
to sections σ of ξ.

We can now present an analog of Theorem 2.2.14 for special orthogonal vector bundles.

Theorem 2.2.17. Let r ≥ 3, and let ξ be a principal-SO(r,C)-bundle. The induced
vector bundle Eξ admits the structure of a special orthogonal vector bundle (Eξ, β, τ). We
write r = 2n+ 1 if r is odd, and r = 2n if r is even. The following are equivalent:

(i) The bundle ξ is Ramanathan-(semi)-stable.
(ii) For all isotropic subbundles F ̸= 0 of (Eξ, β) of rank s = 1, . . . , n, where s ̸= n−1

if r is even, we have µ(F )(≤)µ(Eξ) = 0.

Proof. Any isotropic subbundle F ̸= 0 of Eξ, of rank s ̸= n − 1 if r is even,
corresponds to a reduction σ∗ξ of ξ to a maximal standard parabolic subgroup PI of
SO(r,C), due to Lemma 2.1.23. Due to Lemma 2.2.16, we have:

deg(σ∗Vξ/PI
) = −deg(F )(r − 2s)− deg(F )(s− 1), (2.2.34)

= −deg(F )(r − s− 1). (2.2.35)
Since r ≥ 3, we have r − s − 1 ≥ 1, and follow that deg(σ∗Vξ/PI

)(≥)0 is equivalent to
µ(F )(≤)µ(Eξ) = 0, so the theorem follows. □

If ξ is a principal-SO(2,C)-bundle, it is trivially Ramanathan-stable, and the condi-
tion (ii) of Theorem 2.2.17 would be vacuous.

Finally, we mention an analog of Theorem 2.2.14 and Theorem 2.2.17 for symplectic
vector bundles. By proving symplectic versions of Lemma 2.2.15 and Lemma 2.2.16, we
can now present the following theorem.

Theorem 2.2.18. Let ξ be a principal-Sp(2n,C)-bundle. The induced vector bundle
Eξ admits the structure of a symplectic vector bundle (Eξ, β). The following are equiva-
lent:

(i) The bundle ξ is Ramanathan-(semi)-stable.
(ii) For all isotropic subbundles F ̸= 0 of (Eξ, β), we have µ(F )(≤)µ(Eξ) = 0.

Proof. Analogous to that of Theorem 2.2.17. □



Canonical reductions of principal bundles 35

Theorem 2.2.17 and Theorem 2.2.18 essentially match the results in [Ram75, Remark
3.1], as a consequence of [Ram75, Lemma 3.3]. However, in the even r = 2n case of
Theorem 2.2.17, our result differs slightly due to the fact that in Lemma 2.1.23, not all
isotropic subbundles correspond to reductions to maximal standard parabolic subgroups
PI of SO(2n,C), with the exception being in (2.1.29).

2.2.4. The cases of derived subgroups and products
Until now, we dealt with the structure groups GL(r,C), and for r ≥ 2, also SO(r,C)

and Sp(2n,C), although we did not cover the case of SL(r,C).
In this subsection, we compare the Ramanathan-(semi)-stability of principal bundles

with the Ramanathan-(semi)-stability of their reductions to derived subgroups. As a
special case, we get an analog of Theorem 2.2.14 for special vector bundles, since SL(r,C)
is the derived subgroup of GL(r,C).

Let G be a connected complex reductive group, with neutral element e ∈ G and
reductive Lie algebra g.

Definition 2.2.19. The derived subgroup Gder of G is the subgroup generated by the
commutators g−1h−1gh = [g, h] ∈ [G,G] of elements in G.

The group Gder is a normal subgroup of G by construction. As shown in [Bor91, I.2.4],
it is also a closed connected complex algebraic subgroup of G.

If H1 and H2 are subgroups of G, then H1H2 denotes the subgroup of G generated
by elements of H1 and H2.

Remark 2.2.20. (a) In [Bor91, IV.14.2 Proposition], it is proven that G =
GderR(G), and that Gder ∩ R(G) is finite. Since R(Gder) is contained within
Gder ∩ R(G), and is connected, we have that R(Gder) = e, and thus Gder is
semisimple.

(b) Since R(G) = Z(G)0, the Lie algebra of R(G) is z(g), and the Lie algebra of
Gder is gss, using the decomposition g = gss ⊕ z(g) from Theorem 1.1.5.

(c) We have the maps:

{Parabolic subgroups of G} ↔ {Parabolic subgroups of Gder}, (2.2.36)
P 7→ Pder = Gder ∩ P, (2.2.37)

PderR(G)←[ Pder, (2.2.38)

which are well-defined, since G/P is a complex complete algebraic variety, if and
only if Gder/Pder is such, due to the isomorphism of complex algebraic varieties:

G/P = GderP/P ≃ Gder/(Gder ∩ P ) = Gder/Pder. (2.2.39)

The maps in (2.2.37) and (2.2.38) are inverse to each other, using the iden-
tification between root space decompositions of g and gss from (d) of Remark
1.1.11, and the correspondence between standard parabolic subgroups and sub-
sets of simple roots from (b) of Remark 1.1.25.

Given how closely related the groups G and Gder are, it is natural to ask how the
Ramanathan-(semi)-stability of principial-Gder-bundles and principal-G-bundles are re-
lated.

Lemma 2.2.21. A principal-Gder-bundle ξ is Ramanathan-(semi)-stable if and only if
its extension ξ(G) of ξ, with respect to the inclusion Gder ↪→ G, is Ramanathan-(semi)-
stable as a principal-G-bundle.

Proof. Let Pder be a maximal parabolic subgroup of Gder, and let P = PderR(G)
be the corresponding maximal parabolic subgroup of G. Let σ∗

derξ be a reduction of ξ to
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Pder defined by a section σder : X → ξ/Pder. Since the isomorphism in (2.2.39) is Gder-
equivariant, we induce an isomorphism ξ/Pder ≃ ξ(G)/P of fiber bundles, and thus the
section σder : X → ξ/Pder corresponds to a section σ : X → ξ(G)/P . In this situation,
σ∗(ξ(G)) is isomorphic to an extension of σ∗

derξ to P , and both share cocycles (σij)i,j∈I
that map into Pder.

Using that pder = gss ∩ p, and that p = pder ⊕ z(g) as Lie algebras, we claim that for
all i, j ∈ I, the following diagram commutes:

Ui ∩ Uj Pder GL(pder) C×

P GL(p) C×

σij Ad det

σij

Ad det
. (2.2.40)

Since the adjoint representation of Pder acts on z(g) through the identity, the mor-
phisms on the bottom row of (2.2.40) have the same determinants as the top row of
(2.2.40). Hence, the diagram commutes.

As the top row of (2.2.40) gives us cocycles of det(ad(σ∗
derξ)) and as the bottom row

of (2.2.40) gives us cocycles of det(ad(σ∗(ξ(G)))), these two line bundles are isomorphic
to each other, and thus deg(ad(σ∗

derξ)) = deg(ad(σ∗(ξ(G)))).
Since Ramanathan-(semi)-stability is determined through these degrees, as seen in

Lemma 2.2.9, the claim follows. □

The usefulness of Lemma 2.2.21 is clear in the G = GL(r,C) case.

Example 2.2.22. Let r ≥ 2. For G = GL(r,C), GL(r,C)der is generated by the
matrices in [GL(r,C),GL(r,C)], which have determinant 1. Since the Lie algebra of
GL(r,C)der is gl(r,C)ss = sl(r,C), as we saw in (a) of Example 1.1.7, we have that
GL(r,C)der = SL(r,C).

Due to Theorem 2.2.14, the slope-(semi)-stability of a special vector bundle (E, τ) is
equivalent to the Ramanathan-(semi)-stability of Fr(E).

Since the frame bundle Fr(E) is isomorphic to an extension of the special frame
bundle FrSL(E, τ) to GL(r,C), through the inclusion SL(r,C) ↪→ GL(r,C), we use
Lemma 2.2.21 to follow that the Ramanathan-(semi)-stability of Fr(E) is equivalent to
the Ramanathan-(semi)-stability of FrSL(E, τ).

Altogether, the slope-(semi)-stability of E is equivalent to the Ramanathan-(semi)-
stability of FrSL(E, τ), which is the special linear version of Theorem 2.2.14.

In this chapter, our last goal is to answer whether the correspondences from Theorem
2.2.14, Theorem 2.2.17 and Theorem 2.2.18 are compatible with products of structure
groups.

For m = 1, . . . , l, let Gm be a connected complex reductive group, then G = G1 ×
. . .×Gl is a connected complex reductive group. For all m = 1, . . . , l, we choose a Cartan
subalgebra tm of the Lie algebra gm of Gm, and a choice of positive roots Φ(gm, tm)+,
which induces the simple roots △m. We have a Cartan subalgebra t = t1 ⊕ . . . ⊕ tm
of the Lie algebra g = g1 ⊕ . . . ⊕ gl of G, which induces a natural bijection Φ(g, t) ≃
Φ(g1, t1)⊔. . .⊔Φ(gl, tl). We choose the positive roots Φ(g, t)+ ≃ Φ(g1, t1)+⊔. . .⊔Φ(gl, tl)+,
inducing the simple roots △ ≃ △1 ⊔ . . . ⊔△l.

Lemma 2.2.23. For all m = 1, . . . , l, let ξm be a principal-Gm-bundle, then we have
a principal-G-bundle ξ = ξ1 × . . .× ξl. The bundle ξ is Ramanathan-(semi)-stable if and
only if for all m = 1, . . . , l, ξm is Ramanathan-(semi)-stable.

Proof. Let σ : X → ξ/PI be a reduction of ξ to a maximal standard parabolic
subgroup PI of G.
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Any maximal standard parabolic subgroup PI of G corresponds to I = {αm} ⊆
△ ≃ △1 ⊔ . . . ⊔ △l, where αm corresponds to a simple root in △m, for m = 1, . . . , l.
By construction, PI is equal to G1 × . . . × (PI)m × . . . × Gl, where (PI)m, on the m-th
component, is a maximal standard parabolic subgroup of Gm. Thus, σ : X → ξ/PI
appears as:

σ : X → ξ/PI = (ξ1 × . . .× ξl)/(G1 × . . .× (PI)m × . . .×Gl), (2.2.41)
≃ X × . . .× (ξm/(PI)m)× . . .×X, (2.2.42)

which corresponds to a section σm : X → ξm/(PI)m. Therefore, for a fixed m = 1, . . . , l,
reductions of ξ to PI , with I = {αm}, are in correspondence with reductions of ξm to
(PI)m.

Furthermore, we get an isomorphism of vector bundles:
(σ∗ξ)(g/pI) = PI\((σ∗ξ × g)/pI) ≃ (PI)m\((σ∗

mξm × gm)/(pI)m) = (σ∗
mξm)(gm/(pI)m).

(2.2.43)
Due to this isomorphism, the two vertical tangent bundles σ∗Vξ/PI

and σ∗
mVξm/(PI)m

share
the same degree.

Since this holds for all m = 1, . . . , l, the claim of the lemma follows. □

Remark 2.2.24. Due to this lemma, Theorem 2.2.14, Theorem 2.2.17, Theorem 2.2.18
and Remark 2.2.22, imply the following special cases:

(a) If for all m = 1, . . . , l, we have Gm = GL(rm,C), the bundle ξ = ξ1 × . . .× ξl is
Ramanathan-(semi)-stable if and only if for all m = 1, . . . , l, the induced vector
bundle Eξm is slope-(semi)-stable.

(b) If for all m = 1, . . . , l, we have Gm = SO(rm,C), rm ≥ 3, the bundle ξ =
ξ1 × . . .× ξl is Ramanathan-(semi)-stable if and only if for all m = 1, . . . , l, the
induced vector bundle Eξm fulfills the condition from Theorem 2.2.17.

(c) If for all m = 1, . . . , l, we have Gm = Sp(2nm,C), the bundle ξ = ξ1× . . .× ξl is
Ramanathan-(semi)-stable if and only if for all m = 1, . . . , l, the induced vector
bundle Eξm fulfills the condition from Theorem 2.2.18.

In (Step 4) of the Examples in Section 1.2, we saw in that the Levi-factors LI of the
groups GL(r,C), and for r ≥ 2, also SL(r,C), SO(r,C) and Sp(2n,C), are isomorphic
to products of connected complex reductive groups.

Through Lemma 2.2.23, we can use this to test the Ramanathan-semistability of
principal-LI -bundles, which will be important for investigating canonical reductions later
in Chapter 3.



CHAPTER 3

Canonical reductions of principal bundles

We follow [HN75] to construct Harder-Narasimhan filtrations of vector bundles, and
prove their uniqueness. Afterward, we construct analogs of these filtrations for special
orthogonal and symplectic vector bundles.

Using Harder-Narasimhan filtrations of adjoint bundles, we follow Atiyah and Bott in
[AB82] to construct canonical reductions of principal-G-bundles, where G is a connected
complex reductive group. We also cover the Biswas and Holla approach in [BH04] to
constructing canonical reductions, and verify that these two approaches are equivalent.

As before, X is a compact connected Riemann surface, which is the base space for
our bundles.

3.1. Harder-Narasimhan filtrations of vector bundles

3.1.1. The case of vector bundles
In order to investigate the slope-semistability properties of vector bundles, we intro-

duce Harder-Narasimhan filtrations.

Theorem 3.1.1. Let E ̸= 0 be a vector bundle of rank r. There exists a filtration of
E by subbundles:

FE : 0 = E0 ⊊ . . . ⊊ El = E, (3.1.1)
that fulfills the following properties:

(i) The quotient bundles Fm = Em/Em−1, m = 1, . . . , l, are slope-semistable.
(ii) The quotient bundles fulfill the slope inequalities:

µ(F1) > . . . > µ(Fl). (3.1.2)

This filtration is unique amongst all filtrations of E with these properties.

This is called the Harder-Narasimhan filtration of E, first constructed in [HN75,
Proposition 1.3.9]. In order to prove this theorem, we first discuss some results on degrees
and slopes of vector bundles.

Lemma 3.1.2. Let:
0→ E′ → E → E′′ → 0, (3.1.3)

be a short exact sequence of nontrivial vector bundles. Then one of the following is true:
(i) µ(E′) ≤ µ(E) ≤ µ(E′′).

(ii) µ(E′) ≥ µ(E) ≥ µ(E′′).
In either case, the inequalities may all be strict, or otherwise may all be equalities.

Proof. This follows from the additivity of ranks and degrees of vector bundles, as
seen in Remark 2.2.3. This is proven in [Fri98, 4. Lemma 2]. □

For the following remark, we fix an embedding X ↪→ PnC into a complex projective
space, realizing X as a complex algebraic variety.

38
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Remark 3.1.3. Let OX be the complex algebraic structure sheaf of X. The categories
of vector bundles and locally free-OX -modules are equivalent, where the latter is a full
subcategory of the category of coherent-OX -modules:

VecBunX ≃ LocFree-OX-Mod ⊆ Coh-OX-Mod. (3.1.4)
Let φ : E → E′ be a nontrivial morphism of vector bundles. Since Coh-OX-Mod is an

abelian category, we have kernels kerCoh(φ) and images imCoh(φ) of φ in Coh-OX-Mod,
such that the homomorphism theorem E/ kerCoh(φ) ≃ imCoh(φ) is fulfilled.

For the kernels ker(φ) and images im(φ) of φ in VecBunX , it can be shown that
ker(φ) = kerCoh(φ) ̸= E, and thus imCoh(φ) ̸= 0. Through an application of the Riemann-
Roch formula, as seen in [Fri98, 2. Theorem 2], it can be shown that:

µ(E/ ker(φ)) = µ(imCoh(φ)) ≤ µ(im(φ)). (3.1.5)

Lemma 3.1.4. Let E ̸= 0. We define:
degmax(E) = sup{deg(F )|F ̸= 0 is a subbundle of E}, (3.1.6)
µmax(E) = sup{µ(F )|F ̸= 0 is a subbundle of E}. (3.1.7)

We have degmax(E), µmax(E) <∞, and there exists subbundles F ̸= 0 and F ′ ̸= 0 of
E, such that deg(F ) = degmax(E) and µ(F ′) = µmax(E).

Proof. We first handle degmax(E), where it suffices to show that degmax(E) < ∞,
since degrees are integers.

The 0-th sheaf cohomology of a vector bundle is the complex vector space of global
sections. For a subbundle F ̸= 0 of E of rank s = 1, . . . , r, a global section of F is also a
global section of E, and thus dimC(H0(X,E)) ≥ dimC(H0(X,F )).

We denote the genus of X by g, we then have due to Riemann-Roch, from [Fri98, 2.
Theorem 2], that:

dimC(H0(X,F )) = dimC(H1(X,F )) + deg(F ) + (1− g)s ≥ deg(F ) + (1− g)s, (3.1.8)
dimC(H0(X,E)) + (g − 1)s ≥ dimC(H0(X,F )) + (g − 1)s ≥ deg(F ). (3.1.9)

If g = 0, we have dimC(H0(X,E)) ≥ deg(F ) due to (3.1.9). Otherwise, g ≥ 1, and we
can imply dimC(H0(X,E)) + (g− 1)r ≥ deg(F ) using (3.1.9), so the claim for degmax(E)
follows.

We now handle µmax(E). Let s = 1, . . . , r, then using (3.1.9), we find a subbundle Fs
of E of rank s, such that Fs has maximal degree amongst all subbundles of E of rank s.
Due to the finite choices of s, we follow µmax(E) = maxrs=1 µ(Fs) < ∞, and thus there
exists an s such that µ(Fs) = µmax(E). □

We can now use degmax and µmax, and slope-semistability, to investigate morphisms
of vector bundles.

Lemma 3.1.5. Let φ : E → E′ be a morphism of nontrivial vector bundles. If E is
slope-semistable such that µ(E) > µmax(E′), then φ = 0.

Proof. If φ ̸= 0, we can use Lemma 3.1.2 and Remark 3.1.3 to follow:
µmax(E′) < µ(E) ≤ µ(E/ ker(φ)) ≤ µ(im(φ)), (3.1.10)

which is a contradiction to the maximality of µmax(E′). □

The proof of Theorem 3.1.1 also requires constructing maximal destabilizing subbun-
dles.

Lemma 3.1.6. For a subbundle F ̸= 0 of E of maximal rank, such that µ(F ) =
µmax(E), we have that:

(i) The subbundle F is slope-semistable.
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(ii) Either F = E or µmax(E) > µmax(E/F ).
Such a subbundle F exists, and is unique as a subbundle of E.

We call F the maximal destabilizing subbundle G(E) of E.

Proof. To prove (i), let F ′ ̸= 0 be a subbundle of F , then since F ′ is a subbundle
of E, we have µ(F ′) ≤ µmax(E) = µ(F ), implying slope-semistability.

To prove (ii), assuming F ̸= E, let E′/F ̸= 0 be a subbundle of E/F , such that
µ(E′/F ) = µmax(E/F ), which exists due to Lemma 3.1.4. Due to µ(F ) = µmax(E), and
the maximality of the rank of F , we have µ(E′) < µ(F ). Then by using Lemma 3.1.2 on
the short exact sequence:

0→ F → E′ → E′/F → 0, (3.1.11)
we have µmax(E) = µ(F ) > µ(E′/F ) = µmax(E/F ).

To prove the uniqueness of F , let F ′ be another such subbundle of E with the same
properties as F . If F = F ′ = E, there is nothing to show, otherwise we may assume
F ′ ̸= E or F ̸= E. Without loss of generality, let us assume F ̸= E. The projection
φ : F ′ → E/F fulfills µ(F ′) = µmax(E) > µmax(E/F ), and F ′ is slope-semistable. Using
Lemma 3.1.5, we have φ = 0, and thus F ′ is a subbundle of F . Due to the maximality of
F ′ and F with respect to rank, we get F ′ = F . □

In order to prove Theorem 3.1.1, we also need that the conditions (i) and (ii) of
Lemma 3.1.6 characterize maximal destabilizing subbundles.

Lemma 3.1.7. For a slope-semistable subbundle F ̸= 0 of E, such that F = E or
µmax(E) > µmax(E/F ), we have F = G(E).

Proof. If F = E, then E is slope-semistable, and F = E = G(E) is the maximal
destabilizing subbundle of E.

Otherwise, F ̸= E. The projection φ : G(E) → E/F fulfills µ(G(E)) = µmax(E) >
µmax(E/F ), and thus φ = 0, due to Lemma 3.1.5. Thus, G(E) is a subbundle of F . The
slope-semistability of F implies that µ(G(E)) = µmax(E) = µ(F ), and thus G(E) = F ,
using the maximality of the rank of G(E). □

We can now finally prove the existence and uniqueness of the Harder-Narasimhan
filtration.

Proof of Theorem 3.1.1. We construct a Harder-Narasimhan filtration of E
starting with E0 = 0 and E1 = G(E). If E1 ̸= E, we construct E2 as a subbundle
of E containing E1, such that E2/E1 = G(E/E1). In general, for increasing m ∈ N,
we construct Em recursively such that Em/Em−1 = G(E/Em−1), which terminates at
El = E for some l ∈ N, due to the rank r of E being finite.

For all m = 1, . . . , l, since Fm = Em/Em−1 a maximal destabilizing subbundle of
E/Em−1, it is slope-semistable due to Lemma 3.1.6.

If l = 1, we have already found a Harder-Narasimhan filtration, namely:
FE : 0 = E0 ⊊ E1 = E. (3.1.12)

Otherwise, we assume l ≥ 2, where it remains to verify the slope inequalities on the
quotient bundles. For all m = 1, . . . , l− 1, we have Fm ̸= E/Em−1 and (E/Em−1)/Fm ≃
E/Em, thus we have due to Lemma 3.1.6:

µ(Fm) = µmax(E/Em−1) > µmax(E/Em) ≥ µ(Fm+1), (3.1.13)
and we have thus found a Harder-Narasimhan filtration FE of E.

We now prove the uniqueness of Harder-Narasimhan filtrations. Let the following
filtration:

FE : 0 = E0 ⊊ . . . ⊊ El = E, (3.1.14)
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denote any Harder-Narasimhan filtration, with the quotient bundles Fm = Em/Em−1,
m = 1, . . . , l. We claim that for all m = 1, . . . , l, we have G(E/Em−1) = Fm, and thus
this filtration coincides with the filtration FE we constructed earlier.

We perform an induction on l. If l = 1, the statement is clear, since G(E/E0) =
G(E) = E = F1, as E is slope-semistable.

Assuming the statement is true for l − 1 ≥ 1. For m = 2, . . . , l, we have that
(Em/E1)/(Em−1/E1) ≃ Fm, which is slope-semistable, and thus E/E1 has a Harder-
Narasimhan filtration:

FE/E1 : 0 = E1/E1 ⊊ . . . ⊊ El/E1 = E/E1, (3.1.15)
of length l − 1, which is thus unique.

Let m = 2, . . . , l. From the induction hypothesis, we have G((E/E1)/(Em−1/E1)) =
(Em/E1)/(Em−1/E1). Through the isomorphism (E/E1)/(Em−1/E1) ≃ (E/Em−1),
which restricts to (Em/E1)/(Em−1/E1) ≃ Fm, we follow that G(E/Em−1) = Fm.

It remains to show that G(E/E0) = F1, i.e., G(E) = E1. We have that E1 = F1 is
slope-semistable, and since l − 1 ≥ 1, we have E1 ̸= E. Due to Lemma 3.1.7, it suffices
to show that µmax(E) > µmax(E/E1).

Since G(E/E1) = F2, we have µ(F2) = µmax(E/E1). Using µ(F1) > µ(F2), we follow
that µmax(E) > µmax(E/E1). Thus, we have G(E) = E1.

In conclusion, Harder-Narasimhan filtrations exist and are unique. □

As an example, we explain how Harder-Narasimhan filtrations appear for direct sums
E = L1 ⊕ . . .⊕ Ll of line bundles. For this, we need the following remark and lemma.

Remark 3.1.8. Let E be a vector bundle of rank r, and let F and F ′ be subbundles
of E. Despite the sets F ∩ F ′ and F + F ′ having complex vector spaces as their fibers,
they may not be vector bundles, as they may not be locally trivial. To resolve this, we
define the morphisms φ : F ⊕ F ′ → E and ψ : E → (E/F )⊕ (E/F ′):

φ : (v, w) 7→ v + w, ψ : v 7→ ([v], [v]), (3.1.16)
and define F ∨ F ′ = im(φ) as the sum of F and F ′, and F ∧ F ′ = ker(ψ) as the
intersection of F and F ′, both of which are subbundles of E. Due to Remark 2.1.3, we
have F + F ′ ⊆ F ∨ F ′ and F ∧ F ′ ⊆ F ∩ F ′ as sets.

The projection φ : F → E/F ′ has the kernel ker(φ) = F ∧ F ′ and image im(φ) =
(F ∨F ′)/F . If φ is nontrivial, then Remark 3.1.3 gives us the inequality µ(F/(F ∧F ′)) ≤
µ((F ∨ F ′)/F ′).

We can now prove that direct sums of slope-semistable bundles of the same slope are
slope-semistable.

Lemma 3.1.9. Let:
0→ E′ φ→ E

ψ→ E′′ → 0, (3.1.17)
be a short exact sequence of nontrivial vector bundles, such that E′ and E′′ are slope-
semistable and µ(E′) = µ(E′′). Then E is semistable such that µ(E) = µ(E′) = µ(E′′).

Proof. By applying Lemma 3.1.2 on the short exact sequence in (3.1.17), we have
µ(E) = µ(E′) = µ(E′′).

We now prove the slope-semistability of E. To calculate the slope of im(φ) = ker(ψ),
we use that µ(E/ ker(ψ)) ≤ µ(im(ψ)) = µ(E′′) = µ(E), from Remark 3.1.3, and the short
exact sequence:

0→ ker(ψ)→ E → E/ ker(ψ)→ 0, (3.1.18)
to imply µ(im(φ)) = µ(ker(ψ)) ≤ µ(E) using Lemma 3.1.2. Since imCoh(φ) ≃ E′, from
Remark 3.1.3, we also follow µ(E) = µ(imCoh(φ)) ≤ µ(im(φ)), implying:

µ(im(φ)) = µ(E) = µ(imCoh(φ)) = µ(E/ ker(ψ)). (3.1.19)
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Using Riemann-Roch, we follow:

E′ ≃ imCoh(φ) = im(φ) = ker(ψ), E/ ker(ψ) ≃ imCoh(ψ) = im(ψ) = E′′. (3.1.20)

Let F ̸= 0 be a subbundle of E, we claim that µ(F ) ≤ µ(E). If F is a subbundle of
im(φ), the claim follows directly due to the semistability of E′. Otherwise, F is not a
subbundle of im(φ) = ker(ψ), and thus F/(F ∧ker(ψ)) ̸= 0, and (F ∨ker(ψ))/ ker(ψ) ̸= 0
is isomorphic to a subbundle of E′′. By using Remark 3.1.8, we have:

µ(F/(F ∧ ker(ψ))) ≤ µ((F ∨ ker(ψ))/ ker(ψ)) ≤ µ(E′′) = µ(E). (3.1.21)

If F ∧ ker(ψ) = 0, then we have µ(F ) ≤ µ(E). Otherwise, F ∧ ker(ψ) ̸= 0 is a
nontrivial subbundle of ker(ψ), and µ(F ∧ker(ψ)) ≤ µ(E′) = µ(E), thus by using Lemma
3.1.2, the short exact sequence:

0→ F ∧ ker(ψ)→ F → F/(F ∧ ker(ψ))→ 0, (3.1.22)

implies µ(F ) ≤ µ(E). □

A consequence of this lemma is that direct sums of slope-semistable bundles of the
same slope are slope-semistable. We use this to describe Harder-Narasimhan filtrations
of direct sums E = L1 ⊕ . . .⊕ Ll of line bundles.

Example 3.1.10. Let E = L1 ⊕ . . .⊕ Ll be the direct sum of line bundles, where we
order the slopes:

µ(L1) = . . . = µ(Lt1) > µ(Lt1+1) = . . . = µ(Lt2) > . . . > µ(Ltk+1) = . . . = µ(Ll).
(3.1.23)

Using Lemma 3.1.9, we see that the filtration:

FE : 0 ⊊
t1⊕
i=1

Li ⊊
t2⊕
i=1

Li ⊊ . . . ⊊
l⊕

i=1
Li = E, (3.1.24)

is the Harder-Narasimhan filtration of E.
Such a bundle E appears naturally. For example, if X = P1

C is the projective curve,
then the Grothendieck splitting theorem guarantees that all vector bundles E on X are
isomorphic to a direct sum of line bundles.

3.1.2. The cases of orthogonal and symplectic vector bundles
Having proven that Harder-Narasimhan filtrations for vector bundles exist and are

unique, we ask whether similar filtrations exist for special orthogonal vector bundles and
symplectic vector bundles.

Let (E, β, τ) be a special orthogonal vector bundle of rank r ≥ 2.

Theorem 3.1.11. There exists a filtration of (E, β) by isotropic subbundles of E:

F(E,β) : 0 = E0 ⊊ . . . ⊊ El ⊊ E, (3.1.25)

such that the following properties hold:
(i) The quotient bundles Fm = Em/Em−1, m = 1, . . . , l, are slope-semistable.

(ii) The quotient bundles fulfill the slope inequalities:

µ(F1) > . . . > µ(Fl) > 0, (3.1.26)

(iii) Either El = E⊥
l , or the rank of E⊥

l /El is r′ ≥ 3, and FrSO(E⊥
l /El, βEl

, τEl
) is

Ramanathan-semistable.
This filtration is unique amongst all filtrations of (E, β, τ) with these properties.
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This is called a special orthogonal Harder-Narasimhan filtration of (E, β, τ).
Note that condition (iii) can be characterized using isotropic subbundles of

(E⊥
l /El, βEl

), using Theorem 2.2.17.
The proof approach is the same as that of Harder-Narasimhan filtrations from Theo-

rem 3.1.1, where we need special orthogonal versions of Lemma 3.1.4, Lemma 3.1.6 and
Lemma 3.1.7.

Lemma 3.1.12. We define:
degorth

max(E, β) = sup{deg(F )|F ̸= 0 is an isotropic subbundle of (E, β)}, (3.1.27)
µorth

max(E, β) = sup{µ(F )|F ̸= 0 is an isotropic subbundle of (E, β)}. (3.1.28)

If E has nontrivial isotropic subbundles, we have degorth
max(E, β), µorth

max(E, β) < ∞,
and there exists isotropic subbundles F ̸= 0 and F ′ ̸= 0 of (E, β), such that deg(F ) =
degorth

max(E, β) and µ(F ′) = µorth
max(E, β).

Proof. The case of deg(F ) = degorth
max(E, β) < ∞ directly follows from

degorth
max(E, β) ≤ degmax(E) <∞, using Lemma 3.1.4.
We now handle µorth

max(E, β). Let s = 1, . . . , n, using (3.1.9) from Lemma 3.1.4, we
find an isotropic subbundle Fs of (E, β) of rank s, such that Fs has maximal degree
amongst all isotropic subbundles of (E, β) of rank s. Due to the finite choices of s, we
follow µorth

max(E, β) = maxrs=1 µ(Fs) < ∞, and thus there exists an s, such that µ(Fs) =
µorth

max(E, β). □

Lemma 3.1.13. For an isotropic subbundle F ̸= 0 of (E, β) of maximal rank, such
that µ(F ) = µorth

max(E, β), we have that:
(i) The bundle F is slope-semistable.

(ii) The bundle F is maximally isotropic, i.e., isotropic of maximal rank, or other-
wise µorth

max(E, β) > µorth
max(F⊥/F, βF ).

If µ(F ) > 0, then F is unique with these properties.

With the condition µ(F ) > 0, we call F the maximal destabilizing isotropic subbundle
Gorth(E, β) of (E, β).

Proof. To prove (i), let F ′ ̸= 0 be a subbundle of F , then since F ′ is an isotropic
subbundle of (E, β), we have µ(F ′) ≤ µorth

max(E, β) = µ(F ), implying slope-semistability.
To prove (ii), assuming F is not maximally isotropic, let F ′/F ̸= 0 be an isotropic

subbundle of (F⊥/F, βF ), such that µ(F ′/F ) = µorth
max(F⊥/F, βF ), which exists due to

Lemma 3.1.12. Due to µ(F ) = µorth
max(E, β), and the maximality of the rank of F , we have

µ(F ′) < µ(F ). Using Lemma 3.1.2 on the short exact sequence:
0→ F → F ′ → F ′/F → 0, (3.1.29)

we have µorth
max(E, β) = µ(F ) > µ(F ′/F ) = µorth

max(F⊥/F, βF ).
To prove the uniqueness of F , given µ(F ) > 0, we let F ′ be another isotropic sub-

bundle with the same properties as F , and claim that F = F ′.
We perform an induction on the rank r of E. For r = 2, the statement is clear.

Assuming the statements are true for ranks 2, . . . , r − 1, we prove the statement for r.
We first claim that F ∧ F ′ ̸= 0, otherwise, (F ∨ F ′, βF∨F ′ , τF∨F ′) is a special orthogonal
vector bundle admitting the nontrivial epimorphism:

φ : F ⊕ F ′ → F ∨ F ′, (v, w) 7→ v + w. (3.1.30)
Due to Lemma 3.1.9, F ⊕ F ′ is slope-semistable and:

2µ(F ) = µ(F ⊕ F ′) > µorth
max(F ∨ F ′, βF∨F ′) = µ(F ), (3.1.31)

implying φ = 0 using Lemma 3.1.5, leading to a contradiction.
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Since F ∧ F ′ ̸= 0, we can project F and F ′ into the special orthogonal vector bundle
((F ∨ F ′)/(F ∧ F ′), βF∨F ′ , τF∨F ′). Since this bundle is of lower rank than E, we can use
the induction hypothesis to follow that F = F ′. □

Lemma 3.1.14. For a slope-semistable isotropic subbundle F ̸= 0 of (E, β), with
slope µ(F ) > 0, that is maximally isotropic or µorth

max(E, β) > µorth
max(F⊥/F, βF ), we have

F = Gorth(E, β).

Proof. We perform an induction on the rank r of E. For r = 2, the statement is
clear. Assuming the statements are true for ranks 2, . . . , r − 1, we prove the statement
for r. We first claim that F ∧ Gorth(E, β) ̸= 0, which follows analogously to the proof of
uniqueness in Lemma 3.1.13.

Since F∧Gorth(E, β) ̸= 0, we can project F and Gorth(E, β) into the special orthogonal
vector bundle ((F ∨Gorth(E, β))/(F ∧Gorth(E, β)), βF∨Gorth(E,β), τF∨Gorth(E,β)). Since this
bundle is of lower rank than E, we can use the induction hypothesis to follow that
F = Gorth(E, β). □

Using these results, we can now prove of Theorem 3.1.11 with a similar approach to
Theorem 3.1.1.

Proof of Theorem 3.1.11. We construct a special orthogonal Harder-Narasimhan
filtration of (E, β) starting with E0 = 0. If E is isomorphic to the product bundle X×C2

of rank 2, we have finished constructing the filtration at l = 0. Likewise, if the rank of E
is r ≥ 3 and FrSO(E, β, τ) is Ramanathan-semistable, we have also finished constructing
the filtration at l = 0. Otherwise, we set E1 = Gorth(E, β).

In general, for increasing m ∈ N, if Em−1 fulfills the stopping condition (iii) of
this Theorem, we have finished constructing the filtration at l = m − 1. Otherwise,
we construct Em recursively such that Em/Em−1 = Gorth(E⊥

m−1/Em−1, βEm−1), which
terminates at El for some l ∈ N.

For all m = 1, . . . , l, we have that Fm = Em/Em−1 is slope-semistable, as a maximal
destabilizing isotropic subbundle of (E⊥

m−1/Em−1, βEm−1).
If l = 1, we have already found a Harder-Narasimhan filtration, namely:

F(E,β) : 0 = E0 ⊊ E1 ⊊ E. (3.1.32)
Otherwise, we assume l ≥ 2, where it remains to verify the slope inequalities on the
quotient bundles. For all m = 1, . . . , l− 1, we have that Fm is not maximally isotropic in
(E⊥

m−1/Em−1, βEm−1) and F⊥
m/Fm ≃ E⊥

m/Em, thus we have due to Lemma 3.1.13:

µ(Fm) = µorth
max(E⊥

m−1/Em−1, βEm−1) > µorth
max(E⊥

m/Em, βEm) = µ(Fm+1) > 0. (3.1.33)
Altogether, we have proven the existence of a special orthogonal Harder-Narasimhan

filtration:
F(E,β) : 0 = E0 ⊊ . . . ⊊ El ⊊ E. (3.1.34)

The uniqueness of F(E,β) is proved analogously to the proof of Theorem 3.1.1 by
performing an induction on l. □

We now mention a symplectic version.

Theorem 3.1.15. Let (E, β) be a symplectic vector bundle of rank r = 2n. There
exists a filtration of (E, β) by isotropic subbundles of E:

F(E,β) : 0 = E0 ⊊ . . . ⊊ El ⊊ E, (3.1.35)
such that the following properties hold:

(i) The quotient bundles Fm = Em/Em−1, m = 1, . . . , l, are slope-semistable.
(ii) The quotient bundles fulfill the slope inequalities:

µ(F1) > . . . > µ(Fl) > 0. (3.1.36)
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(iii) Either El = E⊥
l , or the rank of E⊥

l /El is r′ ≥ 2, and FrSp(E⊥
l /El, βEl

) is
Ramanathan-semistable.

This filtration is unique amongst all filtrations of (E, β) with these properties.

This is called the symplectic Harder-Narasimhan filtration of (E, β).

Proof. Analogous to that of Theorem 3.1.11. □

3.2. Canonical reductions of principal bundles

Lemma 2.1.15, Lemma 2.1.23 and Lemma 2.1.26 show that, generally speaking, fil-
trations of vector bundles correspond to reductions of principal bundles to standard par-
abolic subgroups. Having constructed Harder-Narasimhan filtrations, we want to deter-
mine which reductions of principal bundles to standard parabolic subgroups correspond
to Harder-Narasimhan filtrations.

In the general setting where G is a connected complex reductive group, these reduc-
tions are called canonical reductions of principal-G-bundles. These were first introduced
by Atiyah and Bott in [AB82, Chapter 10] using adjoint bundles. Later on, Biswas and
Holla in [BH04] found a characterization of canonical reductions using simple roots and
dominant characters.

3.2.1. The Atiyah-Bott approach
Let ξ be a principal-G-bundle. This approach in [AB82, Chapter 10] involves finding

a filtration F of the adjoint bundle ad(ξ), such that a subbundle in F is a parabolic Lie
algebra subbundle of ad(ξ).

We know that the adjoint bundle is an orthogonal vector bundle, as seen in (b) of
Remark 2.2.7. The following lemma proves that it is also a special orthogonal vector
bundle.

Lemma 3.2.1. The adjoint bundle ad(ξ) is a special orthogonal vector bundle.

Proof. Due to (b) of Remark 2.2.7, it suffices to show that det(ad(ξ)) is isomorphic
to the product bundle X × C. As a linear algebraic group, G can be viewed as a matrix
subgroup of GL(r,C), such that the adjoint representation Ad : G → GL(g) can be
viewed as matrix conjugation.

Cocycles (σij)i,j∈I of ξ induce cocycles (Ad ◦ σij)i,j∈I of ad(ξ), which are equal to
((σ−1

ij )T ⊗ σij)i,j∈I . This induces cocycles (det((σ−1
ij )T ⊗ σij))i,j∈I of det(ad(ξ)), which

are cocycles of the product bundle X × C. Thus, the claim follows. □

We fix β and τ such that (ad(ξ), β, τ) is a special orthogonal vector bundle. We have
the special orthogonal Harder-Narasimhan filtration from Theorem 3.1.11:

F(ad(ξ),β) : 0 = ad(ξ)0 ⊊ . . . ⊊ ad(ξ)l ⊊ ad(ξ). (3.2.1)
By including the corresponding coisotropic subbundles, we can extend the filtration:

0 = ad(ξ)0 ⊊ . . . ⊊ ad(ξ)l ⊆ ad(ξ)⊥
l ⊊ . . . ⊊ ad(ξ)⊥

0 = ad(ξ). (3.2.2)
We claim that ad(ξ)⊥

l is a parabolic Lie subbundle of ad(ξ). To prove this, we first
need the following results on slope-stability.

Lemma 3.2.2. Let E ̸= 0 and E′ ̸= 0 be vector bundles of rank r and r′ respectively.
If E and E′ are slope-semistable, the bundle E ⊗ E′ is slope-semistable of rank rr′, with
slope µ(E ⊗ E′) = µ(E) + µ(E′).

Proof. Due to properties of tensor products, it is clear that E ⊗ E′ has rank rr′.
Using properties of the degree on tensor bundles, we obtain:

µ(E ⊗ E′) = deg(E ⊗ E′)/rr′ = (r′deg(E) + rdeg(E))/rr′ = µ(E) + µ(E′). (3.2.3)
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The statement about slope-semistability is nontrivial. A proof is sketched in [AB82,
Lemma 10.1], referencing the papers [NS65] and [Don83], that prove the case when E
and E′ are slope-stable.

In [NS65, Corollary 2], Narasimhan and Seshadri concluded that slope-stable vec-
tor bundles, of degree 0, are isomorphic to associated bundles of irreducible unitary
representations of the fundamental group of X. As the tensor product of two unitary
representations is again a unitary representation, the slope-semistability of E⊗E′ follows
from [NS65, Proposition 10.4].

Donaldson in [Don83, Theorem] provides another proof, when E and E′ are slope-
stable, using unitary connections of vector bundles. This has the advantage that the
degree of E and E′ no longer has to be 0.

Following [AB82, Lemma 10.1], to generalize to the situation where E and E′ are
only slope-semistable, we may use Jordan-Hölder filtrations of E and E′. □

Lemma 3.2.3. Let E ̸= 0 and E′ ̸= 0 be vector bundles with filtrations by subbundles:
0 = E0 ⊊ . . . ⊊ El = E, 0 = E′

0 ⊊ . . . ⊊ E′
l′ = E′, (3.2.4)

with slope-semistable quotients Fm = Em/Em−1, m = 1, . . . l, and F ′
m = E′

m/E
′
m−1,

m = 1, . . . l′.
Let q ∈ Q. Assuming the quotients fulfill µ(Fm) ≥ q, and µ(F ′

m) < q, every morphism
E → E′ of vector bundles is 0.

Proof. If l = l′ = 1, then E and E′ are slope-semistable, for which the claim follows
from Lemma 3.1.5.

We perform a double induction on (l, l′). Assuming the claim is true for the pairs of
lengths (l, l′), we wish to verify the claim for the lengths (l + 1, l′), and (l, l′ + 1). For
(l + 1, l′), the restriction of a morphism E → E′ to El → E′ is 0 due to the induction
hypothesis. Similarly, E/El → E′ is also 0 due to the induction hypothesis. Altogether,
we have that E → E′ is 0. The argument for (l, l′ + 1) is analogous to of (l+ 1, l′). Thus,
the claim of the lemma follows. □

Lemma 3.2.4. For the filtration (3.2.2) of the adjoint bundle ad(ξ):
(i) For m = 0, . . . , l, the bundle ad(ξ)m is a nilpotent Lie algebra bundle.

(ii) The bundle ad(ξ)⊥
l is a parabolic Lie algebra subbundle of ad(ξ).

Proof. We first prove that ad(ξ)⊥
l is a Lie algebra bundle. It suffices to show that

the map φ : ad(ξ)⊥
l ⊗ ad(ξ)⊥

l → ad(ξ)/ad(ξ)⊥
l induced by the Lie bracket is 0. Using

Lemma 3.2.2, there exists a filtration of ad(ξ)⊥
l ⊗ ad(ξ)⊥

l , whose quotients are semistable
of slope greater or equal to 0. Furthermore, the slopes of the quotients of the Harder-
Narasimhan filtration of ad(ξ)l/ad(ξ)⊥

l are lesser than 0. Using Lemma 3.2.3, we have
that φ = 0.

For (i), a similar argument shows that for m = 1, . . . , l, the map φ : ad(ξ)l⊗ad(ξ)m →
ad(ξ)/ad(ξ)m−1 induced by the Lie bracket is 0.

For (ii), we note that for all x ∈ X, we have (ad(ξ)⊥
l )x ≃ (ad(ξ)⊥

l /ad(ξ)l)x⊕ (ad(ξ)l)x
as Lie algebras. Due to Lemma 3.2.1, (ad(ξ)⊥

l /ad(ξ)l)x is a reductive Lie algebra. Due to
(i), (ad(ξ)l)x is a nilpotent Lie algebra, and thus it is isomorphic to the nilpotent radical
of (ad(ξ)⊥

l )x.
For all x ∈ X, we have found the Levi decomposition of (ad(ξ)⊥

l )x, implying that it
is a parabolic Lie subalgebra of ad(ξ)x. Thus, the claim of (ii) follows. □

The fibers of ad(ξ) are isomorphic to g, and the fibers of ad(ξ)⊥
l are isomorphic to a

parabolic Lie subalgebra p of g, inducing a parabolic subgroup P of G. Since the adjoint
representation Ad : G→ GL(g) restricts to Ad : P → GL(p), ad(ξ)⊥

l induces a reduction
σ∗ξ of ξ to P , such that ad(σ∗ξ) is isomorphic to ad(ξ)⊥

l .
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Definition 3.2.5. A reduction σ∗ξ of ξ to a parabolic subgroup P of G is called a
canonical reduction if ad(σ∗ξ) is isomorphic to ad(ξ)⊥

l .
Knowing that canonical reductions exist, we ask to what extent they are unique, for

which the following lemma is useful.
Lemma 3.2.6. Let P and P ′ be parabolic subgroups of G, let σ∗ξ be a reduction of ξ

to P , and let σ′∗ξ be a reduction of ξ to P ′. If there exists an isomorphism φ : ad(σ∗ξ)→
ad(σ′∗ξ), then P and P ′ are conjugate, i.e., there exists g ∈ G, such that conjg : G→ G,
h 7→ ghg−1 fulfills conjg(P ) = P ′.

Through conjg, we induce an extension (σ∗ξ)(P ′) of σ∗ξ to P ′, such that there exists
an isomorphism ψ : (σ∗ξ)(P ′)→ (σ′∗ξ) of principal-P ′-bundles.

Proof. Given φ : ad(σ∗ξ) → ad(σ′∗ξ), the fibers of the adjoint bundles are isomor-
phic, implying that the Lie algebras p and p′ are isomorphic. As parabolic subgroups of
G, P and P ′ are thus conjugate to each other.

Let g ∈ G such that conjg(P ) = P ′. We fix an arbitrary Y ∈ p, such that Y ̸= 0. For
all x ∈ X, φ restricts to an isomorphism on the fibers at x:

ad(σ∗ξ)x = P\(σ(x)× p)→ ad(σ′∗ξ)x = P ′\(σ′(x)× p′), [v, Y ] 7→ [ηx(v),Ad(g)(Y )],
(3.2.5)

through which we induce a map ηx : σ(x)→ σ′(x) that induces an isomorphism η : σ∗ξ →
σ′∗ξ of fiber bundles.

To ensure that η induces an isomorphism ψ : (σ∗ξ)(P ′)→ (σ′∗ξ) of principal bundles,
we need to verify that for all x ∈ X, ηx is P ′-equivariant with respect to the conjugation
conjg. For all v ∈ σ(x) and all p ∈ P , we have:

[ψx(v)gpg−1,Ad(g)(Y )] = [ψx(v),Ad(gp−1g−1g)(Y )], (3.2.6)
= [ψx(v),Ad(gp−1)(Y )], (3.2.7)
= [ψx(v)pg−1, Y ], (3.2.8)
= [ψx(v)p,Ad(g)(Y )]. (3.2.9)

Thus, the claim follows. □

Due to Lemma 3.2.6, two canonical reductions σ∗ξ and σ′∗ξ of ξ to P and P ′ are con-
jugate in the sense that there exists an isomorphism ψ : (σ∗ξ)(P ′)→ (σ′∗ξ) of principal-
P ′-bundles.

We now see some examples of canonical reductions, and how they are related to
Harder-Narasimhan filtrations.

Example 3.2.7. Let ξ be a princpal-GL(r,C)-bundle, and let Eξ be the induced
vector bundle as constructed in (c) of Example 2.1.12. The Harder-Narasimhan filtration
FEξ

of Eξ induces a reduction σ∗ξ of ξ to a standard parabolic subgroup PI of GL(r,C),
through Lemma 2.1.15.

We claim that σ∗ξ is a canonical reduction. As vector bundles, ad(ξ) is isomorphic
to the vector bundle of endomorphisms End(Eξ). By restricting this isomorphism, the
parabolic Lie algebra subbundle ad(ξ)⊥

l from Lemma 3.2.4 is isomorphic to the subbundle
of End(Eξ) of endomorphisms preserving the Harder-Narasimhan filtration FEξ

of Eξ.
From this, the claim follows.

Similar arguments also work for special orthogonal and symplectic Harder-
Narasimhan filtrations.

Example 3.2.8. (a) Let ξ be a princpal-SO(r,C)-bundle, and let (Eξ, β, τ) be
the induced special orthogonal vector bundle. The special orthogonal Harder-
Narasimhan filtration F(Eξ,β) of Eξ induces a reduction σ∗ξ of ξ to a standard



48 CHAPTER 3. CANONICAL REDUCTIONS OF PRINCIPAL BUNDLES

parabolic subgroup PI of SO(r,C), through Lemma 2.1.23. This is a canonical
reduction of ξ.

(b) Let ξ be a princpal-Sp(2n,C)-bundle, and let (Eξ, β) be the induced symplec-
tic vector bundle. The symplectic Harder-Narasimhan filtration F(Eξ,β) of Eξ
induces a reduction σ∗ξ of ξ to a standard parabolic subgroup PI of Sp(2n,C),
through Lemma 2.1.26. This is a canonical reduction of ξ.

3.2.2. The Biswas-Holla approach
Let ξ be a principal-G-bundle. The approach in [BH04] also finds conditions for re-

ductions σ∗ξ of ξ, to parabolic subgroups P of G, to be canonical reductions. These con-
ditions are analogous to those for Harder-Narasimhan filtrations in Theorem 3.1.1. One
condition deals with Ramanathan-semistability, and the other imposes slope-inequalities.

By investigating the reductions from Example 3.2.7 and Example 3.2.8, we can infer
these conditions for canonical reductions.

Lemma 3.2.9. Let ξ be a princpal-GL(r,C)-bundle, with the canonical reduction σ∗ξ
of ξ to PI , from Example 3.2.7.

(i) The extension (σ∗ξ)(LI) of σ∗ξ to the Levi-factor LI of PI is Ramanathan-
semistable.

(ii) For the length l of the Harder-Narasimhan filtration FEξ
, and for all m =

1, . . . , l − 1, let χm : PI → C× evaluate the determinant of the m-th diago-
nal block divided by the determinant of the m+ 1-st diagonal block. The induced
line bundle χm(σ∗ξ) fulfills deg(χm(σ∗ξ)) > 0.

Proof. We prove (i). As we saw in Example 1.2.2, the Levi-factor LI consists of
the diagonal block matrices of PI , the sizes of which correspond to the ranks rm of the
quotients (Fξ)m of the Harder-Narasimhan filtration of Eξ. Since LI ≃ GL(r1,C)× . . .×
GL(rl,C), we have due to Lemma 2.2.23 that:

(σ∗ξ)(LI) ≃ (σ∗ξ)(GL(r1,C))× . . .× (σ∗ξ)(GL(rl,C)), (3.2.10)

is Ramanathan-semistable if and only if for all m = 1, . . . , l, (σ∗ξ)(GL(rm,C)) is
Ramanathan-semistable. Due to Theorem 2.2.14, this is equivalent to the induced vector
bundle of (σ∗ξ)(GL(rm,C)) being slope-semistable for all m = 1, . . . , l, which is true
since the induced vector bundles are (Fξ)m for all m = 1, . . . , l.

Now we prove (ii). For all m = 1, . . . , l − 1, we have:

deg(χm(σ∗ξ)) = deg((Fξ)m ⊗ (Fξ)∗
m+1) (3.2.11)

= deg((Fξ)m)rm+1 − deg((Fξ)m+1)rm, (3.2.12)
> 0, (3.2.13)

due to the slope inequalities of the Harder-Narasimhan filtration of Eξ. □

We now handle canonical reductions of principal-SO(r,C)-bundles, using the notation
of Subsection 1.2.2. Similarly to Lemma 3.2.9, this reduction fulfills a Ramanathan-
semistability condition and a slope inequality condition.

Lemma 3.2.10. Let ξ be a princpal-SO(r,C)-bundle, with the canonical reduction σ∗ξ
of ξ to PI , from Example 3.2.8.

(i) The extension (σ∗ξ)(LI) of σ∗ξ to the Levi-factor LI of PI is Ramanathan-
semistable.

(ii) For the length l of the Harder-Narasimhan filtration F(Eξ,β), and for all m =
1, . . . , l − 1, let χm : P I → C× evaluate the determinant of the m-th diagonal
block divided by the determinant of the m + 1-st diagonal block. Through the
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isomorphism PI ≃ P I , this induces χm : PI → C×. The induced line bundle
χm(σ∗ξ) fulfills deg(χm(σ∗ξ)) > 0.

Let η : P I → C× evaluate the determinant of the last diagonal block, this
induces η : PI → C×. The induced line bundle η(σ∗ξ) fulfills deg(η(σ∗ξ)) > 0.

Proof. Analogous to that of Lemma 3.2.9. □

Finally, we view the case of principal-Sp(2n,C)-bundles, using the notation of Sub-
section 1.2.3.

Lemma 3.2.11. Let ξ be a princpal-Sp(2n,C)-bundle, with the canonical reduction
σ∗ξ of ξ to PI , from Example 3.2.8.

(i) The extension (σ∗ξ)(LI) of σ∗ξ to the Levi-factor LI of PI is Ramanathan-
semistable.

(ii) For the length l of the Harder-Narasimhan filtration F(Eξ,β), and for all m =
1, . . . , l − 1, let χm : P I → C× evaluate the determinant of the m-th diagonal
block divided by the determinant of the m + 1-st diagonal block. Through the
isomorphism PI ≃ P I , this induces χm : PI → C×. The induced line bundle
χm(σ∗ξ) fulfills deg(χm(σ∗ξ)) > 0.

Let η : P I → C× evaluate the determinant of the last diagonal block, this
induces η : PI → C×. The induced line bundle η(σ∗ξ) fulfills deg(η(σ∗ξ)) > 0.

Proof. Analogous to that of Lemma 3.2.9 and Lemma 3.2.10. □

In order to use these lemmas to characterize canonical reductions, we first need to un-
derstand dominant characters, for which we review some important results on characters
of complex Lie groups.

Definition 3.2.12. For a complex Lie group H, a morphism χ : H → C× of complex
Lie groups is called a character of H. We denote the character group of H by X(H) =
Hom(H,C×), which has a natural group structure induced from C×.

Remark 3.2.13. Let χ : H → C× be a character.
(a) Since C× is abelian, a character χ factorizes through the abelianization Hab =

H/Hder of H. Thus, we have an isomorphism X(H) ≃ X(Hab) of groups.
(b) We have the commutative diagram:

H

h

C×

C

expH expC×
Dχ

χ

. (3.2.14)

If H is connected, the map χ 7→ Dχ is an injection from X(H) into h∨, as a
consequence of [Čap23, Theorem 1.9].

Thus, for connected complex reductive groups G, their character groups X(G) embed as
lattices of z(g)∨, since the abelianization Gab has the Lie algebra gab = g/gss ≃ z(g).

Remark 3.2.14. Using (a) of Remark 2.2.20, we have the isomorphism of complex
algebraic varieties:

Gab = G/Gder = (GderR(G))/Gder ≃ R(G)/(Gder ∩R(G)). (3.2.15)

Since R(G) is a torus, due to [MT12, Proposition 6.20], and since Gder ∩R(G) is finite,
Gab ≃ (C×)m is also a torus. We thus have the isomorphisms of groups:

X(G) ≃ X(Gab) ≃ X((C×)m) ≃ Zm. (3.2.16)
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In order to define dominant characters, we look at characters of standard parabolic
subgroups PI of G, with respect to a fixed Cartan subgroup T of G, and a Borel subgroup
B of G, containing T .

Remark 3.2.15. A character χ : PI → C× of a standard parabolic subgroup PI of G
forms an irreducible one-dimensional representation.

In the Levi decomposition PI ≃ UI ⋊ LI , the restriction χ|UI
: UI → C× ≃ GL(C)

maps to unipotent elements of GL(C), which are trivial. Thus, χ factorizes through
the Levi-factor LI . Using Remark 3.2.13, the restriction χ|LI

: LI → C× corresponds
to Dχ|z(lI) : z(lI) → C in z(lI)∨. In particular, χ : PI → C× can be determined by its
restriction Dχ|t : t→ C in t∨.

Definition 3.2.16. Let PI be a standard parabolic subgroup of G. A nontrivial
character χ : PI → C× is a dominant character if Dχ|t : t → C is a nonnegative integer
linear combination of simple roots in △.

The characters we constructed in (ii) of Lemma 3.2.9, Lemma 3.2.10 and Lemma
3.2.11 are dominant characters, with respect to our standard choices of Cartan and Borel
subgroups of GL(r,C), SO(r,C) and Sp(2n,C) from Chapter 1. We verify an explicit
example.

Example 3.2.17. Let PI the standard parabolic subgroup of GL(4,C) corresponding
to I = {α2,3} ⊂ △, using the notation of Subsection 1.2.1. The character:

χ2 : PI → C×,

(
A B
0 D

)
7→ det(A)/det(D), (3.2.17)

is a dominant character, since Dχ2|t = α1,2 + 2α2,3 + α3,4.

We can now formulate an alternate characterization of canonical reductions of
principal-G-bundles ξ, following [BH04]. Let T be a Cartan subgroup of G, and let
B be a Borel subgroup of G, containing T .

Theorem 3.2.18. A reduction σ∗ξ of ξ to a standard parabolic subgroup PI of G is a
canonical reduction if and only if:

(i) The extension (σ∗ξ)(LI) of σ∗ξ to the Levi-factor LI is Ramanathan-semistable.
(ii) For all dominant characters χ : PI → C×, we have deg(χ(σ∗ξ)) > 0.

This theorem will be proven at the end of this subsection.
The first property (i) generalizes the Ramanathan-semistability of (σ∗ξ)(LI) from

Lemma 3.2.9, Lemma 3.2.10 and Lemma 3.2.11. The second property (ii) also generalizes
the slope inequality conditions from these lemmas, however, in explicit cases, condition
(ii) may be difficult to verify for all dominant characters. Luckily, the following lemma
explains that we only need to check this condition for finitely many characters.

Lemma 3.2.19. Using the notation of Theorem 3.2.18, we have the following:
(i) For all α ∈ I, there exists a nontrivial character χα : PI → C×, such that Dχα|t :

t→ C is an integer linear combination of elements in △, whose coefficient in α
is positive, and whose coefficients in I \ {α} are 0.

(ii) For a reduction σ∗ξ of ξ to a standard parabolic subgroup PI of G, fulfilling (i)
of Theorem 3.2.18, condition (ii) of Theorem 3.2.18 is fulfilled if and only if for
all α ∈ I, there exists a character χα from (i) such that deg(χα(σ∗ξ)) > 0.

Proof. See the middle section of the proof of [BH04, Proposition 3.1]. □

Example 3.2.17 gives an example a of character χα as in this lemma. Note that in
general, χα is not necessarily a dominant character.
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In order to prove Theorem 3.2.18, we first prove that a reduction σ∗ξ of ξ, fulfilling
(i) and (ii) of Theorem 3.2.18, exists. The following lemma helps construct a candidate
for such a reduction.

Lemma 3.2.20. (i) Let:

degmax(ξ) = sup
{

deg(ad(σ∗ξ))
∣∣∣∣ PI is a standard parabolic subgroup of G,
σ∗ξ is a reduction of ξ to PI

}
. (3.2.18)

We have degmax(ξ) < ∞, and there exists reductions σ∗ξ of ξ to PI , such that
deg(ad(σ∗ξ)) = degmax(ξ).

(ii) Let:

Pξ =
{
PI is a standard parabolic subgroup of G

∣∣∣∣ ∃σ∗ξ reduction of ξ to PI ,
deg(ad(σ∗ξ)) = degmax(ξ)

}
.

(3.2.19)
We claim that there exists a standard parabolic subgroup PI ∈ Pξ that is maximal
in terms of inclusion.

Proof. We prove (i). Due to the short exact sequence in (2.2.7) from Remark 2.2.7,
for all reductions σ∗ξ of ξ to a standard parabolic subgroup PI of G, ad(σ∗ξ) is isomorphic
to a subbundle of ad(ξ). Due to Lemma 3.1.4, we know that the degrees of subbundles
of ad(ξ) are bounded from above, i.e., degmax(ad(ξ)) <∞. Thus, (i) follows.

Since Pξ is nonempty, we can clearly find a maximal element in Pξ, proving (ii). □

The following theorem is taken from [BH04, Proposition 3.1].

Theorem 3.2.21. There exists a reduction σ∗ξ of ξ to a standard parabolic subgroup
PI of G, such that:

(i) The degree deg(ad(σ∗ξ)) is equal to degmax(ξ).
(ii) The parabolic subgroup PI is maximal, in terms of inclusion, within Pξ.

Then σ∗ξ is a reduction of ξ to PI fulfilling (i) and (ii) of Theorem 3.2.18.

Proof. Due to Lemma 3.2.20, a reduction σ∗ξ of ξ to PI exists, fulfilling (i) and (ii).
We first show condition (i) of Theorem 3.2.18, i.e., that (σ∗ξ)(LI) is Ramanathan-

semistable. Note that LI is a complex reductive group, containing T and the
Borel subgroup LI ∩ B. Assume to the contrary, i.e., there exists a reduction
σ′∗

1 ((σ∗ξ)(LI)) of (σ∗ξ)(LI) to a maximal standard parabolic subgroup P ′
1 of LI , such

that deg(σ′∗
1 V(σ∗ξ)(LI)/P ′

1
) < 0.

Let P1 be the preimage of P ′
1 of the projection PI → PI/UI ≃ LI . We have that G/P1

is a complete variety, since the projection G/P1 → G/PI is a fiber bundle over the base
space G/PI , which is a complete variety, and with fibers isomorphic to PI/P1 ≃ LI/P

′
1,

which are complete varieties. Thus, P1 is a standard parabolic subgroup of G. Using
PI/P1 ≃ LI/P

′
1, we find an injective morphism of fiber bundles φ : (σ∗ξ)(LI)/P ′

1 →
(σ∗ξ)/P1, given on the fibers x ∈ X by:

((σ∗ξ)(LI)/P ′
1)x = (PI\(σ(x)× LI))/P ′

1 → ((σ∗ξ)/P1)x = σ(x)/P1, [v, g] 7→ vgP1.
(3.2.20)

Thus, the reduction σ′∗
1 ((σ∗ξ)(LI)) of (σ∗ξ)(LI) induces a reduction σ∗

1ξ of ξ to P1.
We observe the following short exact sequence:

0→ p1 → pI → pI/p1 → 0, (3.2.21)

with the adjoint representations Ad : PI → GL(p1), Ad : PI → GL(pI) and Ad : PI →
GL(pI/p1). From this, we induce a short exact sequence of vector bundles:

0→ ad(σ∗
1ξ)→ ad(σ∗ξ)→ σ′∗

1 V(σ∗ξ)(LI)/P ′
1
→ 0. (3.2.22)
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Due to the additivity of the degree, it follows:
deg(ad(σ∗ξ)) = deg(ad(σ∗

1ξ)) + deg(σ′∗
1 V(σ∗ξ)(LI)/P ′

1
) < deg(ad(σ∗

1ξ)). (3.2.23)
Thus, σ∗

1ξ is a reduction of ξ to P1 that contradicts the maximality property
deg(ad(σ∗ξ)) = degmax(ξ) from (i), and the assumption is false.

We now show condition (ii) of Theorem 3.2.18. Using Lemma 3.2.19, for α ∈ I,
it suffices to show deg(χα(σ∗ξ)) > 0. If PI = G, then I = ∅ and there is nothing to
show. Otherwise, let P2 = PI\{α} be the standard parabolic subgroup of G properly
containing PI . We denote by P ′

2 the image of PI of the projection P2 → P2/U2 ≃ L2 to
the Levi-factor L2. Note that L2 is a complex reductive group, containing T and the Borel
subgroup L2 ∩B. Since P2/PI ≃ L2/P

′
2 is a complete variety, P ′

2 is a standard parabolic
subgroup of L2. As PI is contained within P2, the section σ : X → ξ/PI induces a section
σ2 : X → ξ/P2. Moreover, we can define a section σ′

2 : X → (σ∗ξ)(L2)/P ′
2 explicitly:

σ′
2 : x 7→ [σ(x), e]P ′

2. (3.2.24)
We observe the following short exact sequence:

0→ pI → p2 → p2/pI → 0, (3.2.25)
with the adjoint representations Ad : P2 → GL(pI), Ad : P2 → GL(p2) and Ad : P2 →
GL(p2/pI). From this, we induce a short exact sequence of vector bundles:

0→ ad(σ∗ξ)→ ad(σ∗
2ξ)→ σ′∗

2 V(σ∗ξ)(L2)/P ′
2
→ 0, (3.2.26)

Due to the additivity of the degree, it follows:
deg(ad(σ∗

2ξ)) = deg(ad(σ∗ξ)) + deg(σ′∗
2 V(σ∗ξ)(L2)/P ′

2
). (3.2.27)

Since P2 properly contains PI , we have P2 /∈ Pξ and deg(σ′∗
2 V(σ∗ξ)(L2)/P ′

2
) < 0.

We define χ = det ◦ Ad : PI → C×, using Ad : PI → GL(p2/pI). With respect
to ad : pI → Der(p2/pI), the weights of p2/pI are of the form γ ∈ t∨, with a negative
integer coefficient in α, and coefficients 0 in I \{α}. Therefore, χ is of the form 1/χα from
Lemma 3.2.19. As an irreducible representation, χ factorizes through LI , and thus we
have det(σ′∗

2 V(σ∗ξ)(L2)/P ′
2
) ≃ ((1/χα)(σ∗ξ)), and the claim deg(χα(σ∗ξ)) > 0 follows. □

Having constructed a reduction σ∗ξ of ξ to PI that fulfills conditions (i) and (ii) of
Theorem 3.2.18, we wish to prove that this reduction is unique up to conjugation, in the
sense of Lemma 3.2.6. We can then finally prove that conditions (i) and (ii) of Theorem
3.2.18 are equivalent to canonical reductions, i.e., that Theorem 3.2.18 holds.

Remark 3.2.22. Let ρ : G → GL(V ) be a finite-dimensional irreducible represen-
tation, such that the center Z(G)0 maps to scalar multiples of the identity in GL(V ).
By viewing GL(V ) as a complex reductive group isomorphic to GL(r,C), it is proven in
[RR83, Theorem 3.18] that if ξ is Ramanathan-semistable, then ξ(V ) is slope-semistable.

The following theorem is taken from [BH04, Theorem 4.1].

Theorem 3.2.23. For reductions σ∗ξ of ξ to PI and σ′∗ξ of ξ to PI′, fulfilling (i) and
(ii) of Theorem 3.2.18, there exists a conjugation conjg, for g ∈ G, such that conjg(P ) =
P ′, and an isomorphism ψ : (σ∗ξ)(P ′)→ σ′∗ξ.

Proof. Due to Lemma 3.2.6, it suffices to show that ad(σ∗ξ) ≃ ad(σ′∗ξ). Let E =
ad(ξ), E′′ = ad(σ∗ξ) and E′ = σ′∗Vξ/PI′ , then due to the short exact sequence in (2.2.7)
from Remark 2.2.7, E′′ is isomorphic to a subbundle of E, and E′ is isomorphic to a
quotient of E. We write a sequence with inclusion and quotient morphisms:

0→ E′′ → E → E′ → 0, (3.2.28)
and claim that the composed map E′′ → E′ is 0.
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We can find a filtration of subspaces of pI :
0 = p0 ⊊ . . . ⊊ pl = pI , (3.2.29)

such that for m = 1, . . . , l, the representations Ad : PI → GL(pm/pm−1) are well-
defined and irreducible. Since for m = 1, . . . , l, Ad : PI → GL(pm/pm−1) irreducible,
it factorizes through the Levi-factor LI of PI . We can use the adjoint representations
Ad : PI → GL(pm), m = 0, . . . , l, on (3.2.29), to induce a filtration by subbundles of E′′:

0 = E′′
0 ⊊ . . . ⊊ E′′

l = E′′, (3.2.30)
with the quotients F ′′

m = E′′
m/E

′′
m−1, m = 1, . . . , l. Due to Remark 3.2.22, the

Ramanathan-semistability of (σ∗ξ)(LI) implies that for m = 1, . . . , l, F ′′
m is slope-

semistable.
We apply a similar argument to E′. We can find a filtration of subspaces of g/pI′ :

0 = g0/pI′ ⊊ . . . ⊊ gl′/pI′ = g/pI′ , (3.2.31)
such that for all m = 1, . . . , l′, the representations Ad : PI′ → GL(gm/gm−1) are well-
defined and irreducible. These adjoint representations factorize through the Levi-factor
LI′ of PI′ . We can use the adjoint representations Ad : PI′ → GL(gm/pI′), m = 0, . . . , l′,
on (3.2.31), to induce a filtration by subbundles of E′:

0 = E′
0 ⊊ . . . ⊊ E′

l′ = E′, (3.2.32)
with the quotients F ′

m = E′
m/E

′
m−1, m = 1, . . . , l′. Due to Remark 3.2.22, the

Ramanathan-semistability of (σ∗ξ)(LI) implies that for m = 1, . . . , l′, F ′
m is slope-

semistable.
The claim that E′′ → E′ from (3.2.28) is 0, is proven, if we show that µ(F ′′

m) ≥ 0, for
m = 1, . . . , l, and µ(F ′

m) < 0, for m = 1, . . . , l′, and then apply Lemma 3.2.3.
For m = 1, . . . , l, it suffices to show that deg(F ′′

m) ≥ 0. We define χ′′ = det ◦ Ad :
PI → C×, for Ad : PI → GL(pm/pm−1). Since the weight spaces of pm/pm−1 are of the
form gγ , where γ is a dominant character, we can follow that:

deg(F ′′
m) = deg(χ′′(σ∗ξ)) > 0. (3.2.33)

For m = 1, . . . , l′, the argument for µ(F ′
m) < 0 is analogous. We define χ′ = det◦Ad :

PI′ → C×, for Ad : PI′ → GL(gm/gm−1). Since the weight spaces of gm/gm−1 are of the
form gγ , where 1/γ is a dominant character, we can follow that:

deg(F ′
m) = deg(χ′(σ′∗ξ)) < 0. (3.2.34)

We have proven the claim that E′′ → E′, from (3.2.28), is 0. Using the short exact
sequence from (2.2.7), this ensures that ad(σ∗ξ) = E′′ is isomorphic to a subbundle of
ad(σ′∗ξ). By swapping the roles of the two canonical reductions, we follow ad(σ∗ξ) ≃
ad(σ′∗ξ), from which we find an isomorphism ψ : (σ∗ξ)(P ′)→ σ′∗ξ. □

Finally, we can prove Theorem 3.2.18, and show that the Atiyah-Bott and Biswas-
Holla approaches lead to the same notion of canonical reductions.

Proof of Theorem 3.2.18. It suffices to show that a canonical reduction fulfills
conditions (i) and (ii) of Theorem 3.2.18. The other implication follows from the existence
and uniqueness of canonical reductions, and the existence and uniqueness of reductions
fulfilling (i) and (ii) of Theorem 3.2.18.

Due to Theorem 3.2.21, it also suffices to show that for a canonical reduction σ∗ξ
of ξ to PI , we have deg(ad(σ∗ξ)) = degmax(ξ), and that the parabolic subgroup PI is
maximal, in terms of inclusion, within Pξ. Both claims follow from the fact that ad(σ∗ξ)
is isomorphic to ad(ξ)⊥

l in the filtration from (3.2.2). □



CHAPTER 4

Harder-Narasimhan types

In this final chapter, we learn how canonical reductions can be classified by obstruction
classes and Harder-Narasimhan types. We will then calculate Harder-Narasimhan types
for the GL(r,C), SO(r,C) and Sp(2n,C) cases.

To do this, we first review real forms K of connected complex reductive groups G,
which are maximal compact real Lie subgroups of G. Then, we find algebraic char-
acterizations of the fundamental groups of T , G, Gder and Gab as Z-modules. Using
Čech cohomology, we are then able to define obstruction classes and topological types of
principal bundles.

Let X be a compact connected Riemann surface and let ξ be a principal-G-bundle.

4.1. Fundamental groups of reductive groups

We follow [Hum72, 25] and [Kna88, IV.4, VI.1] to investigate real forms of G, and its
Lie algebra g.

Definition 4.1.1. (a) Let k be a real Lie subalgebra of g, whose complexification
k⊗RC is isomorphic to g, and whose Killing-form κk, a restriction of the Killing-
form κ of g, is negative-semidefinite. We call k a compact real form of g.

(b) Let K be a maximal compact real Lie subgroup of G, then K is a real form of
G.

Remark 4.1.2. By constructing Chevalley bases, as seen in [Hum72, 25], compact
real forms k of g exist, and are fully determined by a choice of Cartan subalgebra t of g.

For a compact real form k of g, we denote K as the group generated by the exponential
map expG : g→ G, which we claim is a real form. Using [Kna88, IV.4 Proposition 4.23-
4.27], we follow that the group Ad(K), induced by Ad : K → GL(k), is a compact real
Lie subgroup of GL(g). Thus, K is a compact real subgroup of G. To show that K is
a maximal compact real Lie subgroup of G, we use that k is maximal amongst real Lie
subalgebras of g, whose Killing-form κk is negative-semidefinite.

Example 4.1.3. The real Lie group of unitary matrices U(r) has the Lie algebra u(r)
of skew-Hermitian matrices, which has a negative-semidefinite Killing-form. Since the
complexification of u(r) is gl(r,C). We follow that U(r) is a real form of GL(r,C). A
similar argument shows that SU(r) is a real form of SL(r,C).

The above results were stated abstractly, however, real forms can be constructed in a
concrete way for most complex reductive groups of interest, by using polar decomposition.

Remark 4.1.4. For a matrix group G closed under conjugate-transposition, there
exists a complex vector space of skew-Hermitian matrices u, such that g is the complex-
ification of u as a complex vector space. We can decompose u as u = a + ib, where a
is a set of skew-symmetric matrices, and b is a set of symmetric matrices. We then get
k = a + b, and g = k + ik is a complexification of k as a Lie algebra.

We fix a Cartan subgroup T ≃ (C×)r of G, and the induced real form K of G. For
H = K ∩ T , we have that H ≃ U(1)r is a maximal compact torus of K.

54
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As mentioned before, we want algebraic characterizations of the fundamental groups
of T , G, Gder, and Gab, as Z-modules. Some of these fundamental groups embed naturally
as lattices of the real vector spaces:

gR = ik, tR = t ∩ gR, z(g)R = z(g) ∩ gR, (4.1.1)
where h = k ∩ t = igR ∩ t = itR.

Remark 4.1.5. Due to T ≃ (C×)r and H ≃ U(1)r, we have isomorphisms:
π1(T ) ≃ π1(H) ≃ Hom(U(1), H) ≃ Zr, (4.1.2)

where Hom(U(1), H) are the cocharacters of H. Since U(1) and H are connected, we
have an injection from Hom(U(1), H) to the derivatives:

Hom(u(1), h) = HomR(iR, itR) ≃ HomR(R, tR) ≃ tR, (4.1.3)
where the last isomorphism is given by [2π 7→ X] 7→ X. Thus, π1(T ) is isomorphic to the
full-rank lattice Γ = {X ∈ tR| expH(2πiX) = e} of tR ≃ Rr, called the kernel lattice.

We now recall some constructions from abstract root systems, applied to Φ(g, t),
which is a root system of (VR, ⟨_,_⟩) from Theorem 1.1.13.

Definition 4.1.6. For a root α ∈ Φ(g, t):
(a) The coroot of α is α∗ = 2α/⟨α, α⟩ ∈ t∨. The set of coroots is denoted by Φ∗(g, t).

In [Hum72, III 9.2], it is shown that Φ∗(g, t) is a root system of (VR, ⟨_,_⟩).
(b) The dual-root of α is Hα|gss∩t

∈ gss ∩ t, using notation from (1.1.17). The set of
dual-roots is denoted by ΦH(g, t). Let WR = spanR(ΦH(g, t)), by construction,
ΦH(g, t) is a root system of (WR, κ|WR×WR), of the same type as Φ(g, t).

(c) The dual-coroot of α is Hα∗|gss∩t
= H∗

α|gss∩t
∈ gss ∩ t. The set Φ∗

H(g, t) of dual-
coroots forms a root system of (WR, κ|WR×WR), of the same type as Φ∗(g, t).

Remark 4.1.7. (a) The dual-coroot lattice Λ = spanZ(Φ∗
H(g, t)) is contained

within Γ, as proven in [Hal15, Lemma 12.8].
(b) Using exponential maps on R(G) and Gab, T ≃ (C×)r induces fixed isomor-

phisms Gab ≃ R(G) ≃ (C×)m, where 0 ≤ m ≤ r.

We can now search for expressions of π1(G), π1(Gder) and π1(Gab).

Lemma 4.1.8. (i) The inclusion T ↪→ G induces a surjection π1(T ) → π1(G),
such that π1(G) ≃ Γ/Λ.

Let Λ̂ be the saturation of Λ in Γ, i.e., the sublattice Λ̂ of Γ containing Λ, minimal
with respect to inclusion, such that Γ/Λ̂ is free. We claim that:

(ii) The group π1(Gab) ≃ Zm is a lattice, and the group π1(Gder) is finite.
(iii) The short exact sequence 1 → Gder → G → Gab → 1 induces the short exact

sequence:
1→ π1(Gder)→ π1(G)→ π1(Gab)→ 1, (4.1.4)

of fundamental groups. In particular, π1(Gab) ≃ Γ/Λ̂ and π1(Gder) ≃ Λ̂/Λ.

Proof. For the proof of (i), see [Hal15, Corollary 13.18], noting that T ↪→ G is the
complexified version of H ↪→ K. In particular, the surjectivity of π1(T ) → π1(G) is
proven in [Hal15, Proposition 13.37].

We prove (ii). Since Gab ≃ (C×)m, we have that π1(Gab) ≃ Zm is a lattice. As Gder
has a real form Kder that is semisimple, Lie algebra cohomology implies that π1(Gder) is
finite, as seen in [CE48, Theorem 16.1].

We now prove (iii). Since G→ Gab is a fiber bundle, with fibers isomorphic to Gder,
it is a fibration, inducing the long exact homotopy sequence:

. . .→ π2(Gab)→ π1(Gder)→ π1(G)→ π1(Gab)→ π0(Gder)→ . . . (4.1.5)
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Since Gder is connected, we have π0(Gder) ≃ 1. Using Morse theory, it can be proven
that π2(Gab) ≃ 1, as Gab is a Lie group. Therefore, the sequence in (4.1.4) is exact.
The isomorphisms π1(Gab) ≃ Γ/Λ̂, and π1(Gder) ≃ Λ̂/Λ, follow directly from (4.1.4) and
(ii). □

Remark 4.1.9. (a) For a real form Kab of Gab, we have:
X(G) ≃ X(Gab) ≃ Hom(Kab,U(1)). (4.1.6)

Since Kab and U(1) are connected, we have an injection from Hom(Kab,U(1))
to the derivatives:
Hom(z(k), u(1)) = HomR(iz(g)R, iR) ≃ HomR(z(g)R,R) = z(g)∨

R. (4.1.7)
Thus, X(G) is isomorphic to the full-rank lattice Θ∨ = {f ∈
z(g)∨

R|f(i ker(expKab
)) ⊆ spanZ(2π)} of z(g)∨

R ≃ Rm.
(b) The isomorphisms T ≃ (C×)r and Gab ≃ (C×)m induce isomorphisms X(G) ≃

π1(Gab) and z(g)∨
R ≃ z(g)R. Thus, π1(Gab) embeds into the lattice Θ∨ of z(g)∨

R,
isomorphic to a lattice Θ of z(g)R.

Through the projection T → Gab, we can induce a map tR → z(g)R, and
through the isomorphism Gab ≃ R(G), we can induce a map z(g)R → tR. We
compose these maps as φ : z(g)R → z(g)R, which is an isomorphism. From this,
we induce an embedding of π1(Gab) into z(g)R, as Ψ = φ−1(Θ).

In order to define Harder-Narasimhan types as elements of lattices in tR, we need to
encode properties of canonical reductions within tR. For this, we use Weyl chambers. We
now fix a Borel subgroup B of G, containing T , inducing simple roots △.

Definition 4.1.10. The set CB = {X ∈ tR|∀α ∈ △ : α(X) ≥ 0} is the closed Weyl
chamber of B. For brevity, we refer to closed Weyl chambers as Weyl chambers.

Remark 4.1.11. For a standard parabolic subgroup PI ≃ UI⋊LI of G, we have that T
is a Cartan subgroup of LI , which is a complex reductive group, and that LI∩B is a Borel
subgroup of LI . Using Lemma 4.1.8, we have a dual-coroot lattice ΛI = spanZ(Φ∗

H(lI , t))
of tR ≃ Rr, such that π1(LI) ≃ Γ/ΛI . We obtain the short exact sequence:

1→ π1((LI)der)→ π1(LI)→ π1((LI)ab)→ 1. (4.1.8)

Since R(G) ⊆ R(LI), we have Gab ≃ (C×)m, (LI)ab ≃ (C×)m′ , for 0 ≤ m ≤ m′ ≤ r, such
that π1((LI)ab) embeds into z(lI)R ≃ Rm′ as a full-rank lattice ΨI .

These abstract constructions will be made much clearer through examples, where the
real forms, fundamental groups, and lattices, are made explicit.

Example 4.1.12. For G = GL(r,C), we use the notation of Subsection 1.2.1, with the
isomorphism T ≃ (C×)r, mapping every diagonal entry of a matrix to the corresponding
r-th component. Thus, we have π1(T ) ≃ Zr.

This induces the real form K = U(r) of unitary matrices, with the Lie algebra
u(r). Then H = K ∩ T consists of diagonal matrices, whose entries are in U(1), hence
H ≃ U(1)r. From this, we calculate the following real vector spaces, and the Weyl
chamber:

gl(r,C)R = iu(r) = {X ∈ gl(r,C)|X −XH = 0}, (4.1.9)

tR = t ∩ gl(r,C)R =


z1 0 0

0 . . . 0
0 0 zr


∣∣∣∣∣∣∣z1, . . . , zr ∈ R

 , (4.1.10)

z(gl(r,C))R = z(gl(r,C)) ∩ gl(r,C)R = spanR(Ir), (4.1.11)
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CB =


z1 0 0

0 . . . 0
0 0 zr

 ∈ tR

∣∣∣∣∣∣∣z1 ≥ . . . ≥ zr

 . (4.1.12)

Furthermore, we use the simple roots △∗
H of Φ∗

H(gl(r,C), t) to find the following lattices:

Γ =


z1 0 0

0 . . . 0
0 0 zr


∣∣∣∣∣∣∣z1, . . . , zr ∈ Z

 , (4.1.13)

Λ =


z1 0 0

0 . . . 0
0 0 zr

 ∈ Γ

∣∣∣∣∣∣∣
n∑
i=1

zi = 0

 , Λ̂ = Λ, (4.1.14)

Θ∨ = {f ∈ z(gl(r,C))∨
R|f(spanZ(2πIr)) ⊆ spanZ(2π)}, (4.1.15)

Θ = spanZ(Ir), (4.1.16)
Ψ = (1/r)spanZ(Ir). (4.1.17)

From this, we conclude that π1(GL(r,C)der) ≃ 1, π1(GL(r,C)) ≃ Z and
π1(GL(r,C)ab) ≃ Z.

We explain how these constructions appear for Levi-factors. We restrict to maximal
standard parabolic subgroups PI ≃ UI ⋊ LI of GL(r,C), where I = {αs,s+1} ⊆ △. We
calculate the following real vector spaces and lattices:

z(lI)R = z(lI) ∩ (lI)R =
{(

z1Is 0
0 z2Ir−s

)∣∣∣∣z1, z2 ∈ R
}
, (4.1.18)

ΛI =


z1 0 0

0 . . . 0
0 0 zr

 ∈ Γ

∣∣∣∣∣∣∣
s∑
i=1

zi =
r∑

i=s+1
zi = 0

 , Λ̂I = ΛI , (4.1.19)

Θ∨
I =

{
f ∈ z(lI)∨

R

∣∣∣∣z1, z2 ∈ Z : f
(

2π
(
z1Is 0

0 z2Ir−s

))
⊆ spanZ(2π)

}
, (4.1.20)

ΘI =
{(

z1Is 0
0 z2Ir−s

)∣∣∣∣z1, z2 ∈ Z
}
, (4.1.21)

ΨI =
{(

(z1/s)Is 0
0 (z2/(r − s))Ir−s

)∣∣∣∣z1, z2 ∈ Z
}
. (4.1.22)

From this, we conclude that π1((LI)der) ≃ 1, π1(LI) ≃ Z2 and π1((LI)ab) ≃ Z2.
These results can obviously be generalized for all standard parabolics PI and their

Levi-factors LI , which may have more than two diagonal blocks.

Example 4.1.13. Using the notation of Subsection 1.2.2, for G = SO(r,C), r ≥ 3, we
write r = 2n+1 if r is odd, and r = 2n if r is even. We have the isomorphism T ≃ (C×)n,
defined by Ss1,...,sn 7→ (s1, . . . , sn). Thus, we have π1(T ) ≃ Zn.

This induces the real form K = SO(r,C) ∩U(r), with the Lie algebra k = so(r,C) ∩
u(r). Then H = K ∩ T consists of diagonal matrices in K, whose entries are in U(1),
hence H ≃ U(1)n. From this, we calculate the following real vector spaces, and the Weyl
chamber:

so(r,C)R = ik = {X ∈ gl(r,C)|KrX +XTKr = 0, X −XH = 0}, (4.1.23)
tR = t ∩ so(r,C)R = {Zz1,...zn |z1, . . . , zn ∈ R} , (4.1.24)

z(so(r,C))R = 0, (4.1.25)
CB = {Zz1,...zn ∈ tR|z1 ≥ . . . ≥ zn ≥ 0} , if r is odd, (4.1.26)
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CB = {Zz1,...zn ∈ tR|z1 ≥ . . . ≥ zn−1 ≥ |zn|} , if r is even. (4.1.27)

Furthermore, we use the simple roots △∗
H of Φ∗

H(so(r,C), t) to find the following lattices:

Γ = {Zz1,...zn |z1, . . . , zn ∈ Z} , (4.1.28)

Λ =
{
Zz1,...zn ∈ Γ

∣∣∣∣∣
n∑
i=1

zi ∈ spanZ(2)
}
, Λ̂ = Γ, (4.1.29)

Θ∨ = 0, Θ = 0, Ψ = 0. (4.1.30)

From this, we conclude that π1(SO(r,C)der) ≃ Z/2Z, π1(SO(r,C)) ≃ Z/2Z and
π1(SO(r,C)ab) ≃ 1.

We explain how these constructions appear for Levi-factors. We restrict to max-
imal standard parabolic subgroups P I ≃ U I ⋊ LI of SO(r,C), where I = {es −
es+1}, {es}, {es−1 + es}. We know that LI consists of diagonal block matrices of the
form: a 0 0

0 d 0
0 0 Ks(a−1)TKs

 , (4.1.31)

with a ∈ GL(s,C), d ∈ SO(r − 2s,C). We calculate the following real vector spaces and
lattices:

z(lI)R = z(lI) ∩ (lI)R =


zIs 0 0

0 0 0
0 0 −zIs

∣∣∣∣∣∣z ∈ R

 , (4.1.32)

ΛI =

Zz1,...zn ∈ Γ

∣∣∣∣∣∣
s∑
i=1

zi = 0,
n∑

i=s+1
zi ∈ spanZ(2)

 , (4.1.33)

Λ̂I =
{
Zz1,...zn ∈ Γ

∣∣∣∣∣
s∑
i=1

zi = 0
}
, (4.1.34)

Θ∨
I =

f ∈ z(lI)∨
R

∣∣∣∣∣∣z ∈ Z : f

2π

zIs 0 0
0 0 0
0 0 −zIs

 ⊆ spanZ(2π)

 , (4.1.35)

ΘI =


zIs 0 0

0 0 0
0 0 −zIs

∣∣∣∣∣∣z ∈ Z

 , (4.1.36)

ΨI =


(z/s)Is 0 0

0 0 0
0 0 (−z/s)Is

∣∣∣∣∣∣z ∈ Z

 . (4.1.37)

From this, we conclude that π1((LI)der) ≃ Z/2Z, π1(LI) ≃ Z×Z/2Z, and π1((LI)ab) ≃ Z.
These results can obviously be generalized for all standard parabolics of SO(r,C),

and Levi-factors, which may have more diagonal blocks.

Example 4.1.14. Using the notation of Subsection 1.2.3, for G = Sp(2n,C), we
have the isomorphism T ≃ (C×)n, defined by Ss1,...,sn 7→ (s1, . . . , sn). Thus, we have
π1(T ) ≃ Zn. This induces the real form K = Sp(2n,C)∩U(2n). From this, we calculate
the following real vector spaces, and the Weyl chamber:

sp(2n,C)R = ik = {X ∈ gl(r,C)|J2nX +XTJ2n = 0, X −XH = 0}, (4.1.38)
tR = t ∩ sp(2n,C)R = {Zz1,...zn |z1, . . . , zn ∈ R} , (4.1.39)

z(sp(2n,C))R = 0, (4.1.40)
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CB = {Zz1,...zn ∈ tR|z1 ≥ . . . ≥ zn ≥ 0} . (4.1.41)

Furthermore, we use the simple roots△∗
H of Φ∗

H(sp(2n,C), t) to find the following lattices:
Γ = {Zz1,...zn |z1, . . . , zn ∈ Z} , (4.1.42)

Λ = Γ, Λ̂ = Γ, (4.1.43)
Θ∨ = 0, Θ = 0, Ψ = 0. (4.1.44)

From this, we conclude that π1(Sp(2n,C)der) ≃ 1, π1(Sp(2n,C)) ≃ 1 and
π1(Sp(2n,C)ab) ≃ 1.

We explain how these constructions appear for Levi-factors. We restrict to maximal
standard parabolic subgroups P I ≃ U I ⋊ LI of Sp(2n,C), where I = {es − es+1}, {2es}.
We calculate the following real vector spaces and lattices:

z(lI)R = z(lI) ∩ (lI)R =


zIs 0 0

0 0 0
0 0 −zIs

∣∣∣∣∣∣z ∈ R

 , (4.1.45)

ΛI =
{
Zz1,...zn ∈ Γ

∣∣∣∣∣
s∑
i=1

zi = 0
}
, Λ̂I = ΛI , (4.1.46)

Θ∨
I =

f ∈ z(lI)∨
R

∣∣∣∣∣∣z ∈ Z : f

2π

zIs 0 0
0 0 0
0 0 −zIs

 ⊆ spanZ(2π)

 , (4.1.47)

ΘI =


zIs 0 0

0 0 0
0 0 −zIs

∣∣∣∣∣∣z ∈ Z

 , (4.1.48)

ΨI =


(z/s)Is 0 0

0 0 0
0 0 (−z/s)Is

∣∣∣∣∣∣z ∈ Z

 . (4.1.49)

From this, we conclude that π1((LI)der) ≃ 1, π1(LI) ≃ Z and π1((LI)ab) ≃ Z.
These results can obviously be generalized for all standard parabolics of Sp(2n,C),

and Levi-factors, which may have more diagonal blocks.

4.2. Obstruction classes and Harder-Narasimhan types

Now that we understand how fundamental groups of reductive groups appear, we
can use them to define obstruction classes of principal bundles. Afterward, through the
embeddings of the fundamental groups as lattices of real vector spaces, we can define
Harder-Narasimhan types.

For a universal covering G̃ of G, which is a simply connected complex Lie group, we
have the fibration:

1→ π1(G)→ G̃
p→ G→ 1, (4.2.1)

which defines a fiber bundle p, and a central extension of groups, as π1(G) is abelian.
We denote the algebraic structure sheaf of X by OX . By passing (4.2.1) through

Čech cohomology, we obtain the maps between sets:

. . .→ Ȟ1(X,OX(G̃)) p1→ Ȟ1(X,OX(G)) o2→ Ȟ2(X,OX(π1(G))). (4.2.2)

By construction, the sets Ȟ1(X,OX(_)) correspond to sets of isomorphism classes of
principal bundles. These isomorphism classes can be represented by cocycles of principal
bundles, which correspond to 1-cocycles in the sense of Čech cohomology.

As X is a compact connected Riemann surface, the singular cohomologies
H∗(X,π1(G)) and Čech cohomologies Ȟ∗(X,OX(π1(G))) are naturally isomorphic. Due
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to this, by fixing an orientation on the underlying real manifold of X, Poincaré duality
gives a canonical isomorphism Ȟ2(X,OX(π1(G))) ≃ π1(G).

We now investigate the connecting map o2 : Ȟ1(X,OX(G)) → Ȟ2(X,OX(π1(G))).
For a principal-G-bundle ξ, its isomorphism class [ξ] ∈ Ȟ1(X,OX(G)) is represented by
the cocycles (σij)i,j∈I . For all i, j ∈ I, we use the universal lifting property of covering
spaces to lift σij to σ̃ij , such that the following diagram commutes:

Ui ∩ Uj

G̃

G

σ̃ij

σij

p

. (4.2.3)
In general, these lifts are not unique, as σij can have two different lifts that vary within
the fibers of p : G̃ → G. Furthermore, we cannot guarantee that the cocycle conditions
for (σ̃ij)i,j∈I , from Definition 2.1.6, are fulfilled. We can measure the defect of this failure
by observing for all i, j, k ∈ I:

σijk = σ̃jkσ̃ik
−1σ̃ij : Ui ∩ Uj ∩ Uk → π1(G). (4.2.4)

This defines a 2-cocycle (σijk)i,j,k∈I representing o2([ξ]) ∈ Ȟ2(X,OX(π1(G))). If
o2([ξ]) = 1 ∈ Ȟ2(X,OX(π1(G))), then [ξ] is equivalently the image of an element
[ξ̃] ∈ Ȟ1(X,OX(G̃)), i.e., there exists a principal-G̃-bundle ξ̃ such that ξ̃(G) ≃ ξ.

Definition 4.2.1. Through the isomorphism Ȟ2(X,OX(π1(G))) ≃ π1(G), the class
o2([ξ]) ∈ Ȟ2(X,OX(π1(G))) induces an element o2(ξ) ∈ π1(G), called the second obstruc-
tion class of ξ.

Through the surjection π1(G) → π1(Gab) from Lemma 4.1.8, we can further map
the obstruction class o2(ξ) to an element o2(ξ) ∈ π1(Gab). As before, we fix a Cartan
subgroup T of G, and an isomorphism T ≃ (C×)r. We can now embed the obstruction
class of ξ into tR to define its topological type.

Definition 4.2.2. The fundamental group π1(Gab) embeds as a lattice Ψ of z(g)R,
due to (b) of Remark 4.1.9. Through this, o2(ξ) defines an element µξ ∈ tR, called the
type of ξ.

Remark 4.2.3. For G = GL(r,C), we have that the type µξ is a matrix (z/r)Ir, for
z ∈ Z, due to Example 4.1.12.

It can be shown that z/r = µ(Eξ), for the vector bundle Eξ induced from ξ. To
prove this, we could use that deg(Eξ) =

∫
X c1(Eξ), where c1(Eξ) denotes the first Chern

class of Eξ, as constructed in [Fri98, 2.]. We then need to show that the first Chern class
corresponds to the second obstruction class.

The following remark explains that obstruction classes and types are functorial.
Remark 4.2.4. Let φ : G → G′ be a complex Lie group homomorphism, where G

and G′ are connected complex reductive groups. Let ξ(G′) be the extension of ξ to G′

through φ.
(a) Due to the functoriality of Čech cohomology, the induced morphism φ∗ :

π1(G)→ π1(G′) maps o2(ξ) to o2(ξ(G′)).
(b) Since the abelianization of groups is functorial, the morphism φ induces a mor-

phism φab : Gab → G′
ab, such that the following diagram commutes:

π1(G)

π1(Gab)

π1(G′)

π1(G′
ab)

(φab)∗

φ∗

. (4.2.5)
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Thus, (φab)∗ : π1(Gab)→ π1(G′
ab) maps o2(ξ) to o2(ξ(G′)).

(c) For a Cartan subgroup T ≃ (C×)r of G, and a Cartan subgroup T ′ ≃ (C×)r′ of
G′, such that φ(R(G)) ⊆ R(G′) and φ(T ) ⊆ T ′, the type is also functorial, i.e.,
Dφ maps µξ to µξ(G′).

We are now able to state the existence and uniqueness of canonical reductions, as
proven in Section 3.2.1 and Section 3.2.2, using types.

Theorem 4.2.5. There exists a reduction σ∗ξ of ξ to a standard parabolic subgroup
PI ≃ UI ⋊ LI of G, unique in the sense of Lemma 3.2.6, such that:

(i) The extension of σ∗ξ to the Levi-factor LI , denoted by (σ∗ξ)(LI), is
Ramanathan-semistable.

(ii) For the type µ(σ∗ξ)(LI) ∈ tR, we have µ(σ∗ξ)(LI) ∈ CB. Furthermore, for all α ∈ I,
we have α(µ(σ∗ξ)(LI)) > 0.

This reduction σ∗ξ is a canonical reduction of ξ.

Proof. It suffices to show that the conditions (i) and (ii) are equivalent to the
conditions from Theorem 3.2.18. Clearly (i) is equivalent to (i) of Theorem 3.2.18.

We prove that (ii) is equivalent to (ii) from Theorem 3.2.18. Let χ : PI → C× be any
character, then:

Dχ(µσ∗ξ) = µχ(σ∗ξ) = deg(χ(σ∗ξ)), (4.2.6)

where the first equality follows from Remark 4.2.4, and the second follows from Remark
4.2.3. Similarly, for the restriction χ|LI

: LI → C×, we have:

Dχ(µ(σ∗ξ)(LI)) = µχ((σ∗ξ)(LI)) = deg(χ((σ∗ξ)(LI))). (4.2.7)

We follow directly that (4.2.6) and (4.2.7) are equal, since deg(χ(σ∗ξ)) =
deg(χ((σ∗ξ)(LI))).

Now assume that σ∗ξ fulfills (ii) of Theorem 3.2.18. For all α ∈ △ \ I, we have due
to the construction of Levi-factors in (1.1.22), that α ∈ ΓI ∩ −ΓI acts trivially on z(lI),
hence α(µ(σ∗ξ)(LI)) = 0, since µ(σ∗ξ)(LI) ∈ z(lI)R. For α ∈ I, let χα : PI → C× be a
corresponding character from Lemma 3.2.19. Using (4.2.6) and (4.2.7), we have:

Dχα(µ(σ∗ξ)(LI)) = deg(χα(σ∗ξ)) > 0, (4.2.8)

which is a positive multiple of α(µ(σ∗ξ)(LI)), hence α(µ(σ∗ξ)(LI)) > 0. Altogether, we have
that the type µσ∗ξ(LI) has the properties laid out in (ii).

The reverse direction is completely analogous, where we apply the same arguments
and calculations in reverse. □

Definition 4.2.6. We call µξHN = µ(σ∗ξ)(LI) ∈ tR the Harder-Narasimhan type of ξ.

The Harder-Narasimhan type characterizes the topological type of any canonical re-
duction of ξ. Due to the functoriality of types, the Harder-Narasimhan type µξHN also
encodes the topological type µξ of ξ. We will now see examples of the Harder-Narasimhan
type µξHN , and how it stores information about canonical reductions of ξ.

Example 4.2.7. Let ξ be a principal-GL(r,C)-bundle, with a canonical reduction
σ∗ξ of ξ to PI . We know that σ∗ξ corresponds to the Harder-Narasimhan filtration of
Eξ:

FEξ
: 0 = (Eξ)0 ⊊ . . . ⊊ (Eξ)l = Eξ, (4.2.9)

with the semistable quotient bundles (Fξ)m = (Eξ)m/(Eξ)m−1, m = 1, . . . , l, of rank rm.
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By following Example 4.1.12, and by noting that types coincide with slopes, as seen
in Remark 4.2.3, the Harder-Narasimhan type µξHN of ξ appears as:

µHNξ =


µ((Fξ)1)Ir1 0 . . . 0

0 µ(Fξ2)Ir2 0
...

... 0 . . . 0
0 . . . 0 µ((Fξ)k)Irl

 ∈ tR. (4.2.10)

From this, we see directly that the slope conditions of the Harder-Narasimhan filtration:
µ((Fξ)1) > . . . > µ((Fξ)l), (4.2.11)

coincide with the inequalities given in (ii) of Theorem 4.2.5.
Example 4.2.8. Let ξ be a principal-SO(r,C)-bundle, with a canonical reduction σ∗ξ

of ξ to PI . We know that σ∗ξ induces a special orthogonal Harder-Narasimhan filtration
of (Eξ, β, τ):

F(Eξ,β) : 0 = (Eξ)0 ⊊ . . . ⊊ (Eξ)l ⊊ Eξ, (4.2.12)
with semistable quotient bundles (Fξ)m = (Eξ)m/(Eξ)m−1, m = 1, . . . , l, of rank rm.

Since the types of isotropic subbundles of Eξ coincide with slopes, similar to Remark
4.2.3, the Harder-Narasimhan type µξHN of ξ appears as:

µξHN =



µ((Fξ)1)Ir1 0 . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . ...
... . . . µ((Fξ)l)Irl

. . . . . . . . . ...
... . . . . . . 0 . . . . . . ...
... . . . . . . . . . −µ((Fξ)l)Irl

. . . ...
... . . . . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0 −µ((Fξ)1)Ir1


∈ tR,

(4.2.13)
where the middle 0 column does not appear in the even r = 2n case. From this, the slope
conditions on the quotients:

µ((Fξ)1) > . . . > µ((Fξ)l) > 0, (4.2.14)
fulfill the inequalities given in (ii) of Theorem 4.2.5.

Example 4.2.9. Let ξ be a principal-Sp(2n,C)-bundle, with a canonical reduction
σ∗ξ of ξ to PI . We know that σ∗ξ induces a symplectic Harder-Narasimhan filtration of
(Eξ, β):

F(Eξ,β) : 0 = (Eξ)0 ⊊ . . . ⊊ (Eξ)l ⊊ Eξ, (4.2.15)
with semistable quotient bundles (Fξ)m = (Eξ)m/(Eξ)m−1, m = 1, . . . , l, of rank rm.

Since the types of isotropic subbundles of Eξ coincide with slopes, similar to Remark
4.2.3, the Harder-Narasimhan type µξHN of ξ appears as:

µξHN =



µ((Fξ)1)Ir1 0 . . . . . . . . . 0

0 . . . . . . . . . . . . ...
... . . . µ((Fξ)l)Irl

. . . . . . ...
... . . . . . . −µ((Fξ)l)Irl

. . . ...
... . . . . . . . . . . . . 0
0 . . . . . . . . . 0 −µ((Fξ)1)Ir1


∈ tR,

(4.2.16)
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From this, the slope conditions on the quotients:
µ((Fξ)1) > . . . > µ((Fξ)l) > 0, (4.2.17)

coincide with the inequalities given in (ii) of Theorem 4.2.5.



References

Books

[Bor91] Armand Borel. Linear Algebraic Groups. Springer, 1991. url: https://link.
springer.com/book/10.1007/978-1-4612-0941-6.

[Fri98] Robert Friedman. Algebraic Surfaces and Holomorphic Vector Bundles.
Springer, 1998. url: https://link.springer.com/book/10.1007/978-
1-4612-1688-9.

[GH94] Phillip Griffiths and Joseph Harris. Principles of Algebraic Geometry. John
Wiley and Sons, 1994. url: https://onlinelibrary.wiley.com/doi/book/
10.1002/9781118032527.

[Hal15] Brian Hall. Lie Groups, Lie Algebras, and Representations: An Elementary
Introduction. Springer, 2015. url: https://link.springer.com/book/10.
1007/978-3-319-13467-3.

[Ham17] Mark Hamilton. Mathematical Gauge Theory. Springer, 2017. url: https:
//link.springer.com/book/10.1007/978-3-319-68439-0.

[Hum72] James Humphreys. Introduction to Lie Algebras and Representation Theory.
Springer, 1972. url: https://www.math.uci.edu/~brusso/humphreys.pdf.

[Kna88] Anthony Knapp. Lie Groups Beyond an Introduction, Second Edition.
Birkhäuser, 1988. url: https : / / www . math . stonybrook . edu / ~aknapp /
books/green/beyond2-frontmatter.pdf.

[MT12] Gunter Malle and Donna Testerman. Linear Algebraic Groups and Finite
Groups of Lie Type. Cambridge University Press, 2012. url: https://www.
cambridge.org/core/books/linear- algebraic- groups- and- finite-
groups-of-lie-type/DF7451BDFAB4ED163BB88268EF7490BD.

Manuscripts, Lectures, and Papers

[AB82] Michael Atiyah and Raoul Bott. The Yang-Mills Equations over Riemann Sur-
faces. 1982. url: http://www.math.toronto.edu/mgualt/Morse%20Theory/
Atiyah-Bott.pdf.

[BH04] Indranil Biswas and Yogish Holla. Harder-Narasimhan Reduction of a Prin-
cipal Bundle. 2004. url: https://projecteuclid.org/journals/nagoya-
mathematical- journal/volume- 174/issue- none/Harder- Narasimhan-
reduction-of-a-principal-bundle/nmj/1114632072.full.

[Čap23] Andreas Čap. Lie Groups. 2023. url: https://www.mat.univie.ac.at/
~cap/files/LieGroups.pdf.

[CE48] Claude Chevalley and Samuel Eilenberg. Cohomology Theory of Lie Groups
and Lie Algebras. 1948. url: https://www.ams.org/journals/tran/1948-
063-01/S0002-9947-1948-0024908-8/S0002-9947-1948-0024908-8.pdf.

[Don83] Simon Donaldson. A New Proof of a Theorem of Narasimhan and Seshadri.
1983. url: https : / / projecteuclid . org / journals / journal - of -
differential - geometry / volume - 18 / issue - 2 / A - new - proof - of - a -
theorem-of-Narasimhan-and-Seshadri/10.4310/jdg/1214437664.full.

64

https://link.springer.com/book/10.1007/978-1-4612-0941-6
https://link.springer.com/book/10.1007/978-1-4612-0941-6
https://link.springer.com/book/10.1007/978-1-4612-1688-9
https://link.springer.com/book/10.1007/978-1-4612-1688-9
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118032527
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118032527
https://link.springer.com/book/10.1007/978-3-319-13467-3
https://link.springer.com/book/10.1007/978-3-319-13467-3
https://link.springer.com/book/10.1007/978-3-319-68439-0
https://link.springer.com/book/10.1007/978-3-319-68439-0
https://www.math.uci.edu/~brusso/humphreys.pdf
https://www.math.stonybrook.edu/~aknapp/books/green/beyond2-frontmatter.pdf
https://www.math.stonybrook.edu/~aknapp/books/green/beyond2-frontmatter.pdf
https://www.cambridge.org/core/books/linear-algebraic-groups-and-finite-groups-of-lie-type/DF7451BDFAB4ED163BB88268EF7490BD
https://www.cambridge.org/core/books/linear-algebraic-groups-and-finite-groups-of-lie-type/DF7451BDFAB4ED163BB88268EF7490BD
https://www.cambridge.org/core/books/linear-algebraic-groups-and-finite-groups-of-lie-type/DF7451BDFAB4ED163BB88268EF7490BD
http://www.math.toronto.edu/mgualt/Morse%20Theory/Atiyah-Bott.pdf
http://www.math.toronto.edu/mgualt/Morse%20Theory/Atiyah-Bott.pdf
https://projecteuclid.org/journals/nagoya-mathematical-journal/volume-174/issue-none/Harder-Narasimhan-reduction-of-a-principal-bundle/nmj/1114632072.full
https://projecteuclid.org/journals/nagoya-mathematical-journal/volume-174/issue-none/Harder-Narasimhan-reduction-of-a-principal-bundle/nmj/1114632072.full
https://projecteuclid.org/journals/nagoya-mathematical-journal/volume-174/issue-none/Harder-Narasimhan-reduction-of-a-principal-bundle/nmj/1114632072.full
https://www.mat.univie.ac.at/~cap/files/LieGroups.pdf
https://www.mat.univie.ac.at/~cap/files/LieGroups.pdf
https://www.ams.org/journals/tran/1948-063-01/S0002-9947-1948-0024908-8/S0002-9947-1948-0024908-8.pdf
https://www.ams.org/journals/tran/1948-063-01/S0002-9947-1948-0024908-8/S0002-9947-1948-0024908-8.pdf
https://projecteuclid.org/journals/journal-of-differential-geometry/volume-18/issue-2/A-new-proof-of-a-theorem-of-Narasimhan-and-Seshadri/10.4310/jdg/1214437664.full
https://projecteuclid.org/journals/journal-of-differential-geometry/volume-18/issue-2/A-new-proof-of-a-theorem-of-Narasimhan-and-Seshadri/10.4310/jdg/1214437664.full
https://projecteuclid.org/journals/journal-of-differential-geometry/volume-18/issue-2/A-new-proof-of-a-theorem-of-Narasimhan-and-Seshadri/10.4310/jdg/1214437664.full


Canonical reductions of principal bundles 65

[HM04] Donghoon Hyeon and David Murphy. Note on the Stability of Principal Bun-
dles. 2004. url: https://www.ams.org/journals/proc/2004- 132- 08/
S0002-9939-04-07386-1/S0002-9939-04-07386-1.pdf.

[HN75] Günter Harder and M. S. Narasimhan. On the Cohomology Groups of Moduli
Spaces of Vector Bundles on Curves. 1975. url: https://link.springer.
com/content/pdf/10.1007/BF01357141.pdf.

[Mum62] David Mumford. Projective Invariants of Projective Structures and Applica-
tions. 1962. url: https://www.dam.brown.edu/people/mumford/alg_geom/
papers/1962c--ICMStockholm-IMU.pdf.

[NS65] M. S. Narasimhan and C. S. Seshadri. Stable and Unitary Vector Bundles on
a Compact Riemann Surface. 1965. url: https://www.jstor.org/stable/
1970710.

[Ram75] A. Ramanathan. Stable Principal Bundles on a Compact Riemann Surface.
1975. url: https://link.springer.com/article/10.1007/bf01343949.

[RR83] S. Ramanan and A. Ramanathan. Some Remarks on the Instability Flag. 1983.
url: https : / / projecteuclid . org / journals / tohoku - mathematical -
journal / volume - 36 / issue - 2 / Some - remarks - on - the - instability -
flag/10.2748/tmj/1178228852.full.

https://www.ams.org/journals/proc/2004-132-08/S0002-9939-04-07386-1/S0002-9939-04-07386-1.pdf
https://www.ams.org/journals/proc/2004-132-08/S0002-9939-04-07386-1/S0002-9939-04-07386-1.pdf
https://link.springer.com/content/pdf/10.1007/BF01357141.pdf
https://link.springer.com/content/pdf/10.1007/BF01357141.pdf
https://www.dam.brown.edu/people/mumford/alg_geom/papers/1962c--ICMStockholm-IMU.pdf
https://www.dam.brown.edu/people/mumford/alg_geom/papers/1962c--ICMStockholm-IMU.pdf
https://www.jstor.org/stable/1970710
https://www.jstor.org/stable/1970710
https://link.springer.com/article/10.1007/bf01343949
https://projecteuclid.org/journals/tohoku-mathematical-journal/volume-36/issue-2/Some-remarks-on-the-instability-flag/10.2748/tmj/1178228852.full
https://projecteuclid.org/journals/tohoku-mathematical-journal/volume-36/issue-2/Some-remarks-on-the-instability-flag/10.2748/tmj/1178228852.full
https://projecteuclid.org/journals/tohoku-mathematical-journal/volume-36/issue-2/Some-remarks-on-the-instability-flag/10.2748/tmj/1178228852.full

	Chapter 1. Parabolic subgroups of reductive groups
	Chapter 2. Stability in the sense of Ramanathan
	Chapter 3. Canonical reductions of principal bundles
	Chapter 4. Harder-Narasimhan types
	References

